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AFIT/DS/ENS/12-01

Abstract

Collateral damage presents a significant risk during air drops and airstrikes,

risking citizens’ lives and property, straining the relationship between the United

States Air Force and host nations. This dissertation presents a methodology to

determine the optimal location for making supply airdrops in order to minimize col-

lateral damage while maintaining a high likelihood of successful recovery. A series of

non-linear optimization algorithms are presented along with their relative success in

finding the optimal location in the airdrop problem. Additionally, we present a quick

algorithm for accurately creating the Pareto frontier in the multi-objective airstrike

problem. We demonstrate the effect of differing guidelines, damage functions, and

weapon employment selection which significantly alter the location of the optimal

aimpoint in this targeting problem. Finally, we have provided a framework for mak-

ing policy decisions in fast-moving troops-in-contact situations where observers are

unsure of the nature of possible enemy forces in both finite and infinite time horizon

problems. Through a recursive technique of solving this Markov decision process we

have demonstrated the effect of improved intelligence and differing weights in the

face of uncertain situations.
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Minimization of Collateral Damage in Airdrops and

Airstrikes

I. Introduction

1.1 Motivation

Even as advances in weapons and intelligence gathering improve U.S. mili-

tary capabilites, civilian casualties and collateral damage continue to hurt the U.S.

mission in the Middle East. According to sources [98] [45], over 6,000 Afghan civil-

ians deaths can be attributed directly to U.S. and NATO military actions since the

inception of the Afghanistan campaign in 2001.

Specific to the USAF, in 2006, 116 Afghan civilians were killed as a result

of 13 separate OEF and ISAF bombing missions. In 2007, those numbers grew to

321 civilians in 22 bombings [38]. Aerial bombardment, which has long been the

centerpiece of the U.S. strategic plan in Afghanistan, has had a devastating impact

on Afghan civilians [55]. Some [90] argue that civilian casualties caused by American

troops and American bombs have made the case for the insurgency.

The issue of civilian casualties has become a focal point of strategic planning

for both NATO and the insurgency forces in Afghanistan. Civilian casualties often

are the result of insurgents hiding among civilians or using the civilians as human

shields, since they know American forces are hesitant to strike buildings in which

they believe civilians are located [63]; however, that does not stop insurgents from

using these incidents as rallying cries to coerce the Afghan populace. “The Taliban

and Al Qaeda grasp the value of presenting themselves as defenders of the Afghan

people. They distribute pamphlets in which they revile American and NATO soldiers

as infidel, terrorist forces of occupation. When those same forces send planes to bomb

1



mosques and religious schools, killing Afghan children, the Taliban do not hesitate

to seize on the tragedy as proof of the validity of their propaganda - even if merciless

Al Qaeda interlopers prevented those children from escaping the bombs [96].”

In November 2008, General David McKiernan, commander of U. S. Forces

Afghanistan “ordered a tightening of procedures for launching airstrikes” while stat-

ing that “minimizing civilian casualties is crucial [103].” In June 2009, as his rela-

tionship with Defense Secretary Gates became strained due to the continued civilian

casualties [97], he was asked to resign. His replacement, General Stanley McChrystal,

in one of his first interviews upon taking the role stated, “A willingness to operate

in ways minimizing casualties or damage is critical. The measure of success will not

be enemy killed. It will be shielding the Afghan population from violence [1].” U.S.

commanders have even gone so far as requiring troops to withdraw when possible

rather than get into a protracted firefight that result in civilian casualties [39].

The issue of civilian casualties is not new to the U.S. military during the Global

War on Terrorism (GWOT), but with increasing numbers of news outlets, social

media forums, and personal communication devices, any mistake can be immediately

consumed by people around the world, even before the facts of the scenario are

fully known. Studies on collateral damage estimation from nuclear weapons were

performed after World War II [88]. Kiernan and Owen [55] discuss the similarities

between GWOT and Cambodian civilian casualties during the Vietnam War. Keaney

[54] speaks of the intelligence issues concerning collateral damage from the Gulf

War. Infamously, during the NATO campaign in Kosovo in 2000, the U.S. military

mistakenly bombed the Chinese embassy in Belgrade when believing the building to

be a headquarters for the Yugoslav Army [75]. Similar situations in Yugoslavia [7] [36]

had resulted in buildings which have little-to-no military value being destroyed.

Even with the most modern military technology and decades of war-time expe-

rience, civilian casualties continue to plague U.S. forces and undermine the mission

they seek to accomplish in the Global War on Terrorism.
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1.2 Collateral Damage

The three papers presented in this dissertation explore the three categories of

collateral damage and techniques or tools within each category to lower the amount

of collateral risk while still achieving mission success. Chapter 2 develops a tool for

minimizing collateral risk from supply airdrops based on airdrop dynamics. Chap-

ter 3 provides a framework for understanding the trade-off between lethality on a

military target and the risk to collateral objects for pre-planned airstrike missions.

Chapter 4 develops guidelines for lowering civilian casualties in fast-moving troops-

in-contact scenarios where limited intelligence often yields poor decision-making.

1.2.1 Airdrop Collateral Damage. When typically thought of and reported

on, collateral damage applies to weapons fired near civilians and civilian buildings.

However, collateral damage also results from supply airdrops near populated areas.

These airdrops often need to occur near populated areas due to safety and logistic

concerns. The bundles, often weighing thousands of pounds and traveling at speeds

up to 20 miles per hour, become dangerous projectiles when falling near the civilian

populations. Buildings can be damaged and, in extreme cases, people have been

killed [47].

Improvements in technology for airdrop platforms have vastly improved the

potential accuracy of airdrop missions [5] [69]. However, the majority of airdrops

are still performed by “dumb” techniques, where the bundles are not guided to the

ground, but rather fall freely once exiting the back of the aircraft. These airdrop

missions can often yield unrecoverable bundles when they fall in places where recov-

ery is either impossible, such as in a lake or on a mountainside, or where recovery

is dangerous, such as when bundles land miles from an operating base in hostile

territory.

The official Airdrop Collateral Damage Estimation Methodology [100] notes

the art and science of airdrops, when put together with sound judgment and opera-

3



tional considerations yield a successful drop. The guidance notes that probabilities,

empirical data, and historical observations all should be considered in the planning

stages of an airdrop [99]. The guidance instructs planners to ask themselves five ques-

tions regarding collateral damage during development and execution of an airdrop

plan:

• Are there collateral objects within the collateral hazard area of the intended

airdrop target?

• Can the functionality of the collateral objects be characterized?

• Can collateral concerns be mitigated by utilizing different parachutes/delivery

methods while still achieving the desired effect?

• Are there civilians at risk by the airdrop?

• Is the collateral risk of the airdrop excessive in comparison to the expected

advantage gained by the airdrop?

The collateral damage methodology presented in [100] develops an understand-

ing of airdrop dispersion, incidental consequences (collateral risk), and mitigation

techniques, but it is quick to point out that the methodology is not an exact sci-

ence. The Collateral Damage Weighted Risk Assessment Tool (CDWRAT) presented

in [100] uses a simple formula based on the size and location of collateral objects

and the circular error probable (CE90). The equation shown below yields an overall

percentage of collateral risk within the CE90.

AW = (
Rlong −Rco

Rlong

+ 1)× Aco (1)

where

Rlong - CE90 semi-major radius

Rco - collateral object radius

AW - weighted collateral object area

4



Aco - original collateral object area

Figure 1: Current Collateral Damage Estimated Weighted Risk [99]

This calculation is performed for each collateral object and the results are

aggregated:

total collateral risk =

∑
AW

total CE90 area
. (2)

While this equation presents a good start in estimation of collateral risk from

airdrops, it does neglect a number of factors which affect proper estimation of col-

lateral risk. Cammarano [23] improves this equation by finding the true distribution

of airdrops, rather than simply the CE90. Based on operational drops, he argues

that airdrops can be estimated using the bivariate normal distribution. Further, his

estimation tool uses the bivariate normal distribution with the standard deviations

5



in the x- and y-directions along with zero correlation between the x- and y-miss

distances (i.e. ρ = 0).

Further, Cammarano provides for weights being given to the collateral objects

to more accurately approximate real-world considerations. In the CDWRAT, the

example provided treats bodies of water and buildings of all types and purposes as

the same, with only the size and the distances to the center of the object taken

into consideration. Cammarano’s tool gives the planner the ability to say that while

landing a bundle into a lake and into a occupied building are both undesirable, at

least in the case of the lake, no one is injured, thus a higher weighting can be placed

on the building. While Cammarano’s work doesn’t (typically) yield a percentage of

collateral risk, it gives a much more meaningful statistic (overall collateral damage

expected) to the decision-maker.

Cammarano also allows for buildings of differing shapes, where the CDWRAT

only requires the center of the collateral object; this grants even more accuracy

to his methodology. Cammarano also incorporates multiple bundle drops from the

same mission, where each bundle has its own desired point of impact. Finally, Cam-

marano’s tool gives a report for each collateral object providing accurate information

to the decision-maker who might not want to assign weights to each of the collateral

objects.

The second chapter of this dissertation leverages off of Cammarano’s work.

Once we are able to understand the nature of airdrops and estimate the collateral

risk based upon relatively few inputs, the next question becomes: How do we then

minimize the expected amount of collateral risk for an airdrop?

1.2.2 Pre-Planned Airstrike Collateral Damage. Pre-planned airstrikes are

required to have a collateral damage estimation (CDE) done prior to engagement.

The overall purposes of this CDE is to lower the amount of collateral damage result-

ing from the strike and to make the decision-maker fully aware of the collateral risks

6



prior to making the decision to strike. The U.S. military has developed software

which visually describes collateral risk in the area of the blast [43].

Much of the literature pertains to the blast effect of weapons on buildings,

structures and people. Ngo et al. [77] and Mays and Smith [67] discuss blast

effects on buildings, while Mills [71] and Newmark and Hansen [76] and a U.S.

Army [101] report concern themselves with structural design to resist collateral dam-

age. Humphrey et al. [49] discuss the effects of weapons on people within the blast

and fragmentation radius.

Damage functions to model effects within the blast radius have been devel-

oped to accurately represent collateral risk in an airstrike. Driels [34], in his work

on weaponeering, provides damage functions, and estimates of lethality on military

targets. Douglass [33] presents a method for estimating collateral damage in urban

environments based on the proximity of the friendly forces to the enemy combatants,

based on size of weapons, likelihood of false alarm, blast radius, and circular error

probable of weapon used. David [29] gave estimates of the safe distances in com-

bat scenarios for friendly forces based on circular error radius, the lethal ranges of

weapons, and the damage functions of these weapons. Lucas [64] tacked onto David’s

work by looking at the limiting behavior of damage functions relative to one another,

focusing primarily on four damage functions: the lognormal, exponential, Gaussian,

and cookie-cutter. Przemieniecki [82] discusses aspects of damage functions, accu-

racy functions, and collateral risk, as well as their effect on optimal aiming locations.

Binninger [14] presents a lognormal damage function for use in predicting the effect

of a nuclear weapon and by offsetting the aimpoint of the weapon can estimate the

percentage of buildings destroyed at a given distance from the center of a town.

There has been minimal work in viewing the airstrike problem as a multi-

criteria decision making model, most notably [57] and Brooks et al. [20] who used

agent-based simulation to explore the trade-off between building damage and mission

effectiveness. However, little has been done to develop the Pareto frontier within this
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framework to allow decision-makers the optimal aimpoints and employment methods

to minimize risk while maximizing lethality on a military target.

1.2.3 Troops-in-Contact Collateral Damage. The majority of civilians

killed in U.S. airstrikes died when Special Forces summoned an airstrike to sup-

port them during troops-in-contact (TICs) situations [39]. A TIC situation is an

unplanned opportunity strike in support of ground forces that have made contact

with enemy forces. In fact, only two (of 35) airstrikes resulting in civilian casualties

in 2007-08 were from non-TIC (pre-planned) missions [38]. These rapid-response,

fluid strikes are characterized by (typically) a lack of prior information concerning

the nature and location of enemy and non-combatant forces, as well as friendly forces

which may be in serious harm.

The ground forces in TIC situations, with the use of an Air Force JTAC,

will request air support in order to strike the enemy, or at least provide them the

opportunity to extricate themselves safely from the scene. The fog of war in the form

of limited intelligence is the reason that TICs produce so many casualties. When

friendly force lives are at stake, the air forces must act quickly and decisively, and

the consequence of these actions may be the loss of Afghan civilian lives.

TICs scenarios have been the least studied of the three collateral hazards pre-

sented in this dissertation, yet they present the most danger to civilians. The closest

information in the literature comes from other types of situations where quick de-

cisions need to be made with limited information. Kocher et al. [56] look at the

effects of time pressure on risky decisions and how pure loss and pure gain decision

models affect human decision making. Decision-making where delaying the decision

has an associated cost was studied by Payne et al. [79] where they found that in

some cases delaying decision making results in a lower expected return even when

the best decision is ultimately made.
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Polikar [81] looks at decision-making where intelligence is gathered from mul-

tiple participants with differing perspectives, ultimately arguing that these vary-

ing perspectives yield better decisions. More germane to the battlefield, Phillips

et al. [80] seek to model the flow of information in combat situations, a critical

component of TICs. They present an information processing model which allows

decision-makers to understand the best intelligence available.

The work presented here seeks to provide a framework for the issues and chal-

lenges which TICs present. The framework is a rough sketch of how information (the

key issue in TICs) flows in fast-moving scenarios. Within this framework, we will

seek to identify optimal decisions and optimal times to make these decisions during

these rapid-response situations.

1.3 Methodology Literature Review

The three different problems presented within this dissertation yield varying

formulations which touch on a variety of classes of operations research fields, in-

cluding non-linear programming, global search techniques, evolutionary algorithms,

multi-objective optimization, stochastic programming, and Markov decision pro-

cesses. The developed formulations and solution techniques are explored in the

following sections to give a background on which the three papers will be based.

1.3.1 Non-Linear Programming. Bazaraa et al. [11] formulate the non-

linear minimization program as:

min f(x) (3)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hi(x) = 0 for i = 1, . . . , l

x ∈ X,

9



where X is a subset of Rn. f is a function from Rn → R and is referred to as the

objective function. gj(x) ≤ 0 and hk(x) = 0 are the constraints. In a non-linear

program, the constraints and objective functions can be non-linear (whereas, in a

linear program, all constraint and objective functions are linear).

If f(x̂) ≤ f(x) for all x ∈ Rn, then x̂ is the global minimum for the function f

in the unconstrained problem. If there exists a neighborhood Nε(x̂) around x̂ where

f(x̂) ≤ f(x) for any x ∈ Nεx̂ then x̂ is a local minimum for f in Rn.

If f is differentiable at x̂, and if x̂ is a local minimum, then ∇f(x̂) = 0. Con-

versely, if f is differentiable at x̂ and there exists a vector d such that ∇f(x̂)td < 0,

then there exists a δ > 0 such that f(x̂ + λd) < f(x) for each λ ∈ (0, δ) (d is the

descent direction of f at x̂). The descent direction d represents a direction of im-

provement in an optimization problem that is used in most non-linear programming

optimization algorithms, such as response surface methodology [74].

Similarly, in the constrained problem, if f(x̂) ≤ f(x) for all x ∈ S where S is

the feasible region for the problem, then x̂ is the global minimum and if there exists

a neighborhood Nε(x̂) around x̂ where f(x̂) ≤ f(x) for any x ∈ Nεx̂ then x̂ is a local

minimum for f in S. With S as a non-empty set in Rn and x̂ ∈ S̄ then the cone of

feasible directions (D) of S at x̂ is

D = {d : d 6= 0, and x̄ + λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.

The cone of improving directions F at x̄ of f is

F = {d : f(x̄ + λd) < f(x̄) for all λ ∈ (0, δ) for some δ > 0}.

If f is differentiable at x̄ ∈ S then x̄ is a local optimum only if F ∩ D = ∅. That

is, there exists no feasible, improving direction for f at x̄. The concepts of feasi-

ble and improving directions are integral to area search methods over continuous

(particularly, differentiable) objective functions.
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While Lasdon [61] presents algorithms and heuristics for global optimization of

large systems, Roy et al. [86] review commercially available packages for spreadsheet

optimization. Achetti and Schoen [6] in their survey of global optimization tech-

niques lump approaches into space-covering techniques, trajectory techniques (such

as response surface methodology) and random search techniques, finding that each

technique has its merit and no strategy is optimal without a priori information on

the objective function.

1.3.1.1 Random Search Techniques. A random search technique is

proposed by Solis and Wets [93] to find global minima in optimization problems

expanding on the work of Anderson [4], Rastrigin [84], and Karnopp [53]. Their

work is particularly useful in situations where function characteristics are difficult to

compute, when the response function is “bumpy”, when processing time is limited,

and when it is highly desirable to find a global minimum among a large number

of local minima. The assumption for the response function is that it is continuous,

since a discontinuous function could conceivably have a minimum at a discontinuous

point, which would be (nearly) impossible to find without an exhaustive search of

every point in the input space S. Thus, they search for the essential infimum α of

f on S which is defined as α = inf{t : v[x ∈ S|f(x) < t] > 0}, which is the set

of points that yield values close to the essential infimum α has non-zero v-measure,

meaning that the search is for a location where a set of points have a response less

than t and this set also must have an interior (consider the case where the global

minimum is at a discontinuous point x, for some t ≥ f(x) and r > 0 there exists no

neighborhood B(x; r) such that all points in B(x; r) have a response value less than

t).

Importantly, Solis and Wets note that any global search method must meet

the assumption that for any Borel subset A of S with v(A) > 0, we have that∏∞
k=0[1−µk(A)] = 0. In essence, this means that any subset A (with volume) of the

search space S must be searched to guarantee that the global minimum is found.
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The Solis and Wets algorithm uses normally-distributed steps to generate new

points, the response value of the point is calculated and if the newly generated point

has a higher (worse) objective function value, then steps are taken from the initial

point in the opposite direction to find a new point. If both of these new points

are worse than the original point then a new starting point is generated. Hart [44]

notes that the Solis and Wets algorithm lacks definitive stopping criteria that yield

optimality, typically relying on a fixed number of iterations. Additionally, Hart

states, “In general, methods that utilize a priori information about a problem will

outperform general purpose methods that utilize less information [44].”

Niederreiter [78] presents quasi-Monte Carlo methods for generating a sequence

of uniformly distributed random points spread on a space. Estimates, using the

variance of these random points, can be made for the value of the minima over the

searched area and local search methods can be used in conjunction with these quasi-

Monte Carlo techniques; however, global minimization again cannot be guaranteed

on an objective function and domain without a priori information.

1.3.1.2 Response Surface Methodology. Anderson [4] discusses exper-

imental design and response surface methods to find input parameters for optimal

performance in an uncharacterized experiment. Brooks [21] compares steepest as-

cent and univariate iterative methods for determining the optimal settings during

experimentation, finding the ascent methods superior in terms of accuracy and speed.

A basic approach for approximating response functions is proposed by Myers

and Montgomery [74] with y = f(ξ1, ξ2, . . . , ξk) + ε where f is the true response

function, which is either unknown or complicated. ε in the function for this work

will represent sources of variation that are not accounted for by the derived model.

ξ1, ξ2, . . . , ξk will be the input values for our model; in the airdrop model these will

typically be the aimpoint (x and y) and the approach angle.
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Myers and Montgomery discuss further the sequential nature of response sur-

face methodology whereby initially hypotheses regarding the important input vari-

ables takes place, often backed up with a screening experiment. The screening exper-

iment will identify the variables affecting the response variable and which variables’

effects should be investigated further. After the screening takes place, they recom-

mend the use of a first-order model and the method of steepest ascent, whereby

starting from an initially small portion (referred to by Myers and Montgomery as

the region of interest) of the overall search space, we begin to move in the direction

of the optimal combination of input variables. Iteratively this method of steepest

ascent is performed until a maximum for the response function is found (once the

current solution can no longer be improved in the local area (region of interest)).

Critically, it should be noted that the maximum found by this technique is simply

a local maximum for the response function and is not guaranteed to be a global

maximum. Situations arise where the response surface will be “bumpy” and have

many local maxima throughout the total search space; thus while the techniques of

Myers and Montgomery will be used, they must be extended in the effort to find a

global maximum.

1.3.2 Evolutionary Algorithms. Hart [44] inspected genetic algorithms in

combination with local search algorithms for solving global optimization problems.

Michalewicz and Schoenauer [70] discuss adapting evolutionary algorithms to con-

strained parameter optimization problems, pointing out that finding a general algo-

rithm that is optimal for all non-linear programs is unrealistic. The existence of local

(and not global) optima presents the primary problem in non-linear programs with

continuous functions, since steepest descent algorithms will yield only local (and not

necessarily global) optima. Michalewicz and Schoenauer break down evolutionary

algorithms into mutation operators, such as [10], [78] and [37], and crossover opera-

tors, as in [87], [35], [30] and later [94]. Mutation operators typically use Gaussian

mutation to modify components of a solution vector, whereas crossover operators
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use multiple parent solution vectors to develop future generations of solution vec-

tors. In both cases, the algorithms remove less-optimal solutions in each proceeding

generation. Further, [70] views the constraint-handling methods as falling into four

categories: feasibility preserving, penalty-based, feasibility/infeasibility separated,

and hybrid methods.

Storn and Price [94] developed the differential evolution technique for solv-

ing global optimization problems. Their algorithm, discussed in much more detail

in the following chapter, inspired a great deal of effort in the realm of optimiza-

tion. Lampinen and Zelinka [59] apply the differential evolution algorithm to mixed

integer-discrete-continuous problem demonstrating the versatility of the algorithm.

Similar to what [70] presented for the general non-linear programming algorithm,

Lampinen [58] presents a constraint-handling approach for the constrained differen-

tial evolution algorithm. Huang et al. [48] demonstrate a self-adaptive algorithm for

constrained non-linear problems which modifies the two control parameters (F and

CR) of differential evolution, thus cutting out the need for exhaustive parameter

fine-tuning.

1.3.3 Multi-Objective Optimization. Multi-objective optimization is ap-

plied in cases where there is more than one objective function.

min y = f(x) = (f1(x), f2(x), . . . , fn(x)) (4)

subject to x = (x1, x2, . . . , xm) ∈ X

y = (y1, y2, . . . , yn) ∈ Y

where x is the solution vector, X is the solution space, y is the objective vector,

and Y is the objective space [107]. With more than one objective function, there

becomes no strict ordering in the objective space (unlike in a single-objective prob-

lem). Therefore, the Pareto frontier concept is implemented, where we say that a

solution x̂ is non-dominated if there exists no other x such that fk(x) ≤ fk(x̂) for
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all k = 1, . . . , n and fk(x) < fk(x̂) for some k ∈ 1, . . . , n. The collection of such

non-dominated (Pareto-optimal) points forms the Pareto frontier for the formulation.

Techniques to solve multi-objective formulations attempt to find solutions near

the Pareto frontier. However, since the Pareto-frontier is not a single point (typically)

nor a finite collection of points (typically for continuous solution spaces), then finding

solutions near the true Pareto frontier is not enough. Multi-objective algorithms also

seek to find a variety of solutions that describe the Pareto-frontier more completely.

Ziztler et al. [106] provide three metrics which describe the performance of multi-

objective algorithms; these metrics are based on accuracy of the solutions, diversity

of solutions, and breadth of solutions in creating the Pareto-frontier.

Evolutionary algorithms have been found to be particularly robust in develop-

ing the Pareto frontier for multi-objective problems due to their ability to process

a set of solutions in parallel, therefore exploiting similarities of solutions by recom-

bination [107]. Ziztler and Thiele [107] developed a strength Pareto evolutionary

algorithm approach (SPEA) which stored nondominated solutions externally in a

second group, evaluated solution fitness dependent on the number of external non-

dominated points which dominate it, and clustered the nondominated point set in

order to lower the nondominated set’s population without losing diversity.

Babu and Jehan [9] implemented the work of Storn and Price [94] into the

multi-objective realm by iteratively expelling dominated solutions for each genera-

tion. Xue et al. [104] present another differential evolution based algorithm (MODE)

where non-dominated solutions are identified at every generation with the mutation

step being different for non-dominated and dominated points. A Pareto-frontier

differential evolution (PDE) is presented by Abbass et al. [2] which is seen to im-

prove upon the SPEA approach of [107], with their approach constantly finding new

non-dominated points in each generation and then removing similar ones based on

a distance metric.
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1.3.4 Dynamic Programming. Dynamic programming can be thought of

using stages and states. A stage is a discrete point in time at which a decision (uk) is

made based on the state (xk) of the system. The state is the summary of all decisions

from previous stages and their outcomes, due not only to the decisions made but

also the randomness (wk) involved with moving from stage to stage. Some additive

reward is gained for each decision made, and the goal is to maximize the sum of the

rewards over the time horizon of the problem.

Bertsekas [13] lays out the main ingredients of a basic dynamic programming

formulation as:

1. A discrete-time system of the form xk+1 = fk(xk, uk, wk)

2. Independent random parameters

3. A control constraint (decision)

4. An additive cost of the form EgN(xN) +
∑N−1

k=0 gk(xk, uk, wk)

5. Optimization over policies (rules for choosing uk for each k and each possible

value for xk).

Denardo [31] formulates the dynamic programming problem as:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (5)

where:

k indexes discrete time,

xk is the state of the system and summarizes past information that is relevant for

future optimization

uk is the control or decision variable to be selected at time k

wk is a random parameter

N is the number of time control is applied.

For the LLS problem, we assume that each stage brings about more data about

16



the problem assuming the pilot continues to loiter. The rewards in this model are

typically assumed to be costs, either the cost of a “look” decision or the likelihood of

being incorrect given a “leave” or “shoot” decision. Ahner [3] applied approximate

dynamic programming techniques to optimize control of unmanned aerial vehicles in

combat situations.

1.3.5 Stochastic Programming. Avriel and Williams [8] derive the expected

value of information in recourse problems and show the value of a wait-and-see

approach versus a recourse method. The difference between them is that in a recourse

problem, a decision is made, then a random variable is observed, and then a recourse

to a contingency plan is determined. A wait-and-see approach supposes that one

could see what the random variable is before one makes an initial decision, and

maximize our initial decision based on the known data rather than the unknown

random variable. Certainly, the expected profit from the wait-and-see approach must

be at least as great as in the recourse problem case. Then they pose a suggestion

that if they could purchase the perfect information, how much should they pay

for perfect information? EV PI = WS − RP yields the expected value of perfect

information. Avriel and Williams prove that EV PI ≥ 0 given that an expected

value of the random variable and the indicated maxima exist. Further, they show

that 0 ≤ EV PI ≤ EV − RP . EVPI can be applied to stochastic linear problems

with recourse and more general stochastic programs including those with quadratic

recourse.

1.3.5.1 Two-Stage Stochastic Linear Program. Kall and Wallace [51]

formulate the two-stage stochastic linear program as:
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min cTx+Q(x) (6)

subject to Ax = b, x ≥ 0,

where Q(x) =
∑
j

pjQ(x, ξj)

and Q(x, ξ) = min{q(ξ)Ty|W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0},

where pj is the probability that ξ̃ = ξj, the jth realization of ξ̃, h(ξ) = h0 + Hξ =

h0 +
∑

i hiξi, T (ξ) = T0 +
∑

i Tiξi and q(ξ) = q0 +
∑

i qiξi.

Higle and Sen [46] present an algorithm for two-stage linear programs with

recourse that leverages off of Benders’ decomposition whereby they randomly gener-

ate observations of random variables to construct statisical estimates of supports of

the objective function. Gassmann [40] presents a computer code for the multistage

stochastic linear programming problem that uses an implementation of a nested

decomposition algorithm.

Interior point methods are also considered by Birge and Holmes [16], Lustig, et

al. [65], and Dantzig and Madansky [28]. Birge and Qi [17] are credited with applying

Karmarkar’s [52] interior-point method to stochastic programming. They formulate

the stochastic linear program with recourse (and discrete random variables) as:
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min cTx0 +Q(x0) (7)

subject to A0x0 = b0

x0 ≥ 0,

where Q(x0) =
N∑
i=1

piQ(x0, ξ
i)

and for each i = 1, . . . , N,

the recourse cost Q(x0, ξ
i) is obtained by solving the recourse problem:

Q(x0, ξ
i) = inf{qiy|Wy = hi − T ix, y ∈ Rni+},

ξi = (qi, hi, T i),

pi = prob [ξ(ω) = ξi].

Birge and Qi noted that the dual block angular linear programs have the form:

min cTx0 +
N∑
i=1

cTi xi (8)

subject to A0x0 = b0

Aix0 +Wixi = bi, i = 1, . . . , N,

xi ≥ 0, i = 0, . . . , N

where xi ∈ Rni , i = 0, . . . , N,

bi ∈ Rmi , i = 0, . . . , N,

where mi ≤ ni, i = 0, . . . , N

and A0,Wi have full row rank.

By substituting the expressions for Q into the stochastic formulation a linear pro-

gramming formulation is created with W = Wi, T
i = Ai, and piq

i = ci for i =

1, . . . , N . The resulting problem has n = n0 + Nn1 variables and m = m0 + Nm1
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constraints. As Birge and Qi point out, methods for solving the linear formula-

tion include Van Slyke and Wet’s L-shaped method [102], Dantzig and Mandansky’s

decomposition method [28], and the basis factorization method proposed by Straz-

icky [95]. The L-shaped method solves the primal problem, while the decomposition

and factorization methods solve the dual formulation.

Lustig et al. [65] base their work on scenario analysis, where a few realizations

of the stochastic parameters are representative of the space of possible parameter

outcomes. For a two-stage model, the size of the optimization problem grows linearly

and typically, due to the size, decomposition methods are used. They point out

that interior point methods make solving these large resulting models feasible. They

implemented a primal-dual interior point method similar to the one described earlier,

in which they show that the primal-dual method performs significantly better than

Birge and Qi’s [17] dual block angular approach. Additionally, they propose a partial

splitting method which, due to the sparsity of the A matrices, speeds up the interior

point methods considerably.

Birge and Holmes [16] formulated a dual affine algorithm starting with a

dual feasible interior point, noting that the vast majority of the computational ef-

fort required is to calculate a solution to the symmetric positive definite system

(AD2AT )dy = b) or to calculate a factorization of the matrix that will enable quick

solution of the system. Further, Blomvall and Lindberg [18] present Riccati-based

primal interior point solver for multistage stochastic programming.

Birge and Holmes [15] also present a paper on the motivation for use of interior

point methods for solving two-stage stochastic linear programs with fixed recourse

along with characteristics of interior point solving methods. Additionally, they note

that the size of stochastic linear programs can become extremely large due to the

number of permutations of the unknown variables, and thus they present methods

for speeding up the interior point methods, including reformulation of the program,
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transpose product factorization, and factorization of the dual block angular pro-

grams.

1.3.6 Markov Decision Process. A Markov decision process (MDP) is a

problem in which there is a decision maker, a finite number of policies or choices

the decision maker can choose, a transition probability matrix which defines the

likelihood of the next state given the current state and policy, a transition reward

matrix which indicates the current reward gained for the state and policy, and a

performance metric based on the rewards gained during the stages of the MDP [42].

S, a finite state space of possible system states. A realization of the random variable

S is denoted by s.

A, a finite set of actions. A realization of the random variable A is denoted by a.

An action a causes transitions from the current state to some new state.

T : S×A×S → R[0,1] is the state-transition function, giving the probability that the

agent transit to state s′ when it is in state s and takes action a. In other words, the

transitions specify how each of the actions and exogenous events change the state of

the world. We denote by T (s, a, s′) = P (s′|a, s) this probability. We have for each

s,
∑

s′ P (s′|a, s) = 1.

R : S ×A→ R is the reward function giving the expected immediate reward gained

by the agent for taking each action in each state.

Markov decision process applied to patient throughput in hospitals was re-

searched by Broyles [22], while Qiu and Pedram [83] looked at the Markov decision

process for continuous-time decision-making.

1.3.7 Partially-Observable Markov Decision Process. When the agent is

unsure of the state s that he is currently in, unlike the MDP where the agent knows

where he is at all times, this problem becomes a partially-observable Markov decision

process (POMDP). There is some probability distribution around the state in which
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the agent thinks he is in (the belief state b). McAllister [68] looked at optimal

planning with imperfect information, such as what U.S. troops have on battlefields.

O : S×A→ Π(Ω) is the observation function, which gives, for each action and

resulting state, a probability distribution over all possible observations (we write

O(s′, a, o) for the probability of making observation o given that the agent took

action a and landed in state s′).

Monahan [72] introduces a system where one of three decisions may be made.

Either the observer can “inspect” - attempt to observe the true state of the target

another time (at a cost), “stop” - make a determination as to the true state of the

target and have no option for further observation, or “continue” in which he moves

to the next time interval (at a cost) where the same three options will again be

available to him. In the next time interval there is some probability that the nature

of the target has changed which is a difference from the assumptions in this paper.

Monahan concluded, “While the Markovian property does not hold for the state of

the system, it does hold for the belief state of the system. The optimal policy for

any given stage is only dependent on the current belief state and not decisions made

in previous stages.”

Monahan [73] later looked at the applications and theory behind partially

observable MDPs. Kaelbling et al. [50] and Smallwood and Sondik [92] looked at

optimal decision policies in partially observable MDPs. Yost and Washburn [105]

applied linear programming techniques for decision making within POMDPs.

1.4 Overview of Literature Review

The following figures provide an overview of the topics covered and method-

ologies implemented in the following chapters.

22



Figure 2: Motivation and Background Literature Review Summary
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Figure 3: Methodology Literature Review Summary

1.5 Description of Research

This dissertation first seeks to understand the nature of both airdrops and

airstrikes in terms of the parameters and distributions that accurately represent

all aspects of these missions. Once the parameters are understood, a formulation

for each of these problems is sought. Optimization techniques and algorithms will

then be created to minimize collateral risk while adhering to mission and logistical
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constraints. Finally, sensitivity analysis along with lessons-learned will be presented

to provide take-aways for mission planners acting in these environments under strict

time and mission requirements.

1.6 Statement of Original Contribution

This dissertation seeks to fill in gaps in both the literature and the methodology

by which the USAF estimates and minimizes collateral risk. The major contributions

presented in the following three chapters are:

• Characterization of airdrop distribution based on real-world data.

• Formulation of the collateral damage problem.

• Comparison of non-linear programming algorithms for solving the airdrop col-

lateral damage minimization problem.

• Algorithm for quickly finding optimal airdrop parameters based on a surrogate

function for the bivariate normal distribution.

• Multi-objective formulation for the airstrike collateral damage problem.

• Algorithm for finding Pareto optimal solutions for the airstrike problem.

• Quantitative comparison of damage functions for use in estimating collateral

risk.

• Quantitative comparison of weapon employment guidelines in the collateral

airstrike problem.

• Formulation of limited intelligence airstrike problem.

• Quantitative comparison of effects of weighting and a priori intelligence on

optimal firing policy.

25



II. Minimizing Supply Airdrop Collateral Damage Risk

2.1 Background

2.1.1 Introduction. Supply airdrops occur for a variety of reasons. Supplies

are airdropped to scientists at the South Pole, Humvees to American troops at

forward operating bases in the mountains of Afghanistan, and food and water to

Haitians in the days after their devastating 2010 earthquake.

The necessity of airdrops as part of emergency disaster relief is underscored

in [91], [27], [62]. Shortly after the 2010 Haitian earthquakes, for example, United

States Air Force (USAF) planes were dropping over 200 water and food bundles per

day outside Port-au-Prince [24] from 100 daily flights [66]. Bottlenecks on the roads

in Haiti along with the blockage of the seaport prevented the movement of critical

supplies, forcing the primary source of aid to be airdrops into secured areas [66].

The airdropped supplies helped minimize widespread violence and looting in the

days following the earthquake.

Supply airdrops are typically used in cases where plane landings are either

unsafe or inefficient. In the first four months of 2011, the USAF dropped 25 million

pounds of supplies for troops and locals in Afghanistan and Iraq. This was not pos-

sible by truck. Supply airdrops constitute a vital tactical piece of both war-fighting

and peacekeeping missions for the USAF throughout the world and consequently the

USAF has developed expertise potentially useful to other supply airdrop agencies.

Airdrops allow ground units to operate in areas that are not tied to ground logistical

resupply. Aerial resupply allows the freedom of movement without worrying about

convoys and their large logistical footprint. [60]

Supply airdrops have risks beyond those of the equipment and personnel in-

volved. A recent challenge.gov request [26] underscored the danger that comes with

dropping humanitarian food and water supplies over populated areas (where they

26



may be in highest demand) and the need to develop alternative methods of per-

forming such drops. With the uncertain flight paths of airdrops, along with their

weight (up to thousands of pounds), airdrops are particularly dangerous ventures

when occurring even in sparsely-populated areas. Poorly planned or executed air-

drops can result in lost, ruined, or stolen cargo and, more importantly, collateral

damage to the people and buildings near the drop zone. This is compounded by

the fact that an airdrop is typically not a single object - rather a series of objects

referred to as a bundle. This article develops a new technique for estimating risk of

collateral damage associated with supply airdrops and an efficient method for finding

the optimal aimpoint and approach direction for supply missions so as to minimize

collateral damage. We demonstrate, based on real-world drop data, that only an

estimate of the standard deviations in the x- and y- directions, with respect to flight

path, is required to estimate the expected risk of collateral damage during a supply

mission. The standard deviation parameters fit a bivariate normal distribution that

characterizes the error of a drop. Risk of damage is estimated by integrating the

bivariate normal distribution over the areas of undesirable landing locations in the

drop zone for each object in the supply bundle dropped.

Once an estimate of collateral damage risk is established, the goal becomes to

find the aimpoint and flight approach angle which minimize collateral damage yet

result in a drop as close to the recipients as possible. We must also accommodate the

reality that different elements in the scene may have different values of avoidance (e.g.

an occupied building versus a lake). The nature of this search is highly non-linear

because:

• of the shape of the bivariate normal distribution,

• each object in the bundle has its own drop error distribution, and

• each element in the scene has its unique location, shape, size, and value.
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To develop an effective global search technique for this problem, response sur-

face methodology (RSM), differential evolution (DE), and random search (RS) meth-

ods are compared and combined in this paper to provide quick and effective tools for

finding this optimal solution. The best search algorithm will be shown to be orders

of magnitude faster than enumeration and up to 20% more accurate than the use of

maps and the naked eye.

2.1.2 Nature of Airdrops. Airdrop accuracy has been an ever-present chal-

lenge to airdrop supply planners since the early days of resupply via aircraft airdrop.

Techniques such as high-velocity airdrops for rugged cargo minimize the effects of

wind on airdrop trajectory and maintain accuracy while allowing for higher release

altitudes and increased aircraft survivability. “Reefing” is an airdrop beginning de-

scent at high velocity for target accuracy and then switching to low velocity in

mid-descent. This allows aircraft to drop cargo from higher altitudes with the accu-

racy of a lower altitude drop. Many of these techniques and technologies were born

out of operational necessity and can be used in combination with different chute and

aircraft types.

One of the most successful recent examples of accuracy improvement is the

Joint Precision Airdrop System (JPADS). JPADS uses a steerable parachute and an

airborne guidance unit to control the cargo’s descent and guide it to its desired point

of impact [69]. JPADS offers many advantages over traditional airdrops: increased

accuracy, reduced drop zone size requirements, standoff cargo release, improved air-

craft survivability, and immediate feedback on airdrop accuracy [12]. A disadvantage

of JPADS is its cost relative to traditional “dumb” airdrops (which, by the way, com-

prise the majority of supply airdrops). In order to keep costs down recovering and

reusing retrograde airdrop items is necessary, though not always feasible [12]. The

challenge is that an agency providing supply airdrop support may not have the bud-

get or access to the best techniques and may need to do the best they can with
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the equipment they have. This is a main motivation for the development of our

methodology.

Regardless of drop technology used, planners must choose carefully where to

target. If a drop is too far from the point of use, recovery personnel could be exposed

to hazard and delay in getting relief to the recipients. If it is too close to ground

personnel or collateral objects, then the consequences of cargo weighing several tons

traveling at speeds of over 50 feet per second are unacceptable. How do mission

planners know how close is too close? What is the chance that the cargo will impact

a collateral object inside the drop zone?

Airdrop errors occur when an airdrop does not land at its intended point of

impact. These errors are commonly described as a distance from the drop target and

an angle with respect to the drop zone axis or by (x, y) coordinates. These errors

can be caused by problems with the computed air release point, flight path error,

drop crew error, drop zone elevations, cargo ballistics, load weight, or unpredicted

winds. While the calculation of a release point takes into account many factors

(summarized graphically in Figure 4) to determine the correct location in the air

to release an airdrop from the aircraft, individual drops are always subject to drop

error. In the next section, we characterize those errors probabilistically.
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Figure 4: Drop Zone Planning Diagram [99]

2.1.3 Bivariate Normal Distribution of Airdropped Bundles. We find that,

under a wide range of drop conditions and technologies, the drop errors from supply

bundles fit the bivariate normal distribution. The data set we studied was provided

by the USAF Air Mobility Command (AMC). It is actual (as opposed to practice

run) data from over 700 airdrops in the field. Figure 5 shows a plot of all of the

data. It is not GPS data. You can almost imagine the ground spotter radioing that

a particular drop was “50 meters long at your 2 o’clock”. The data set has unique

characteristics which we studied at length. For more detail on that analysis, see [23].

Our main findings follow.
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Figure 5: Airdrop Scatter

We find that the mean errors in both the x and y direction are statistically

zero. On average (and this result remained when we parse the data into different

technologies and conditions), the planners hit where they aimed. However, there is

substantial variation. Further, the x and y directional errors have different standard

deviations. This makes sense because typically the timing of an airdrop affects the

y direction whereas wind has the majority of the effect on the x miss distance. We

also find that drop errors in the x-dimension are uncorrelated from those in the

y-dimension (i.e. ρ = 0) which makes risk calculations using the bivariate normal

distribution simpler, but if ρ 6= 0 then the same algorithms would be used; run time

would simply be longer.

It is worth stopping here to consider the implication of these findings to an

airdrop planner. The only data necessary to characterize the errors in a supply drop

are the standard deviations in the x and y directions for the equipment being used

in a particular drop zone. This can be accomplished with relatively few data points
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after making relatively few flights. Practice drops could even be done away from the

drop site to assess accuracy.

As an example, we can characterize the types of supply airdrops that AMC

made in our data set. The standard deviations for combinations of chute type and

airdrop altitude are summarized in Figure 6, along with the number of data points

collected for each combination. We find that the chute type and the airdrop altitude

have a statistically significant effect on the error distribution patterns, but not the

aircraft type. An AMC planner merely looks up a value pair from the right two

columns of the figure to characterize fully the shape of the risks of their drops.

Figure 6: Standard Deviation Table

To give the reader a sense of what the risk profiles look like, Figure 7 depicts

the density function for seven individual objects in a bundle airdrop mission. The

distance (five units) between the elements is found by multiplying the aircraft speed

at drop by the time interval between releases. Figure 7 shows the effect of increasing

standard deviation. When the standard deviation of the drop objects is low, their

individual probability distributions can be easily identified as multiple modes. On the

other hand, with a small separation distance relative to the standard deviations, the

graph becomes smoother and the bundle drop error profile approaches unimodality.
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Figure 7: Example Multiple Bivariate Normal Distributions

(d = 5, n = 7, σx = σy = 1, 5, 10)

One of these bundle shapes, dropped into the landing scene, is how we char-

acterize collateral damage risk. Numerically, we integrate the compound bivariate

normal distribution over the undesirable landing areas. In the next section, we begin

the development of an optimal location algorithm based on bivariate bundle risks.

2.2 Classes of Applicable Global Search Algorithms

It is not obvious how to design an optimum-seeking algorithm for this problem.

It is one of the contributions of this paper. In this section, we introduce several

important candidate global search algorithms.

2.2.1 Random Search. Random search technique is proposed by Solis and

Wets [93] to find global minima in optimization problems expanding on the work

of Anderson [4], Rastrigin [84] and Karnopp [53]. The Solis and Wets algorithm

uses normally distributed steps to generate new points, the response value of the

point is calculated and if the newly generated point has a higher (worse) objective

function value, then steps are taken from the initial point in the opposite direction

to find a new point. If both of these new points are worse than the original point

then a new starting point is generated. Hart [44] notes that the Solis and Wets

algorithm lacks definitive stopping criteria that yield optimality, typically relying on

a fixed number of iterations. However, their work is particularly useful in situations
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where function characteristics are difficult to compute, when the response function

is “bumpy”, when processing time is limited, or when it is highly desirable to find

a global minimum among a large number of local minima. The assumption for

the response function is that it is continuous, since a discontinuous function could

conceivably have a minimum at a discontinuous point, which would be (nearly)

impossible to find without an exhaustive search of every point in the input space. All

of these characteristics are exactly the conditions of the collateral damage problem

assuming bivariate normally distributed bundle drops.

Niederreiter [78] presents quasi-Monte Carlo methods for generating a sequence

of uniformly distributed random points spread on a space. Estimates, using the

variance of these random points, can be made for the value of the minima over

the searched area and local search methods can be used in conjunction with these

quasi-Monte Carlo techniques, however, global minimization cannot be guaranteed

on an objective function and domain without a priori information. Hart [44] notes

importantly: “In general, methods that utilize a priori information about a problem

will outperform general purpose methods that utilize less information.” For example,

a method to specifically find minima for the bivariate normal problem could use

random search, but take advantage of solving a more specific problem than a general

search or general algorithm is made to solve.

2.2.2 Response Surface Methodology. Another important basic approach

for approximating response functions is proposed by Myers and Montgomery [74]

with y = f(ξ1, ξ2, . . . , ξk) + ε where f is the true response function, which is either

unknown or complicated. ε in the function for this work will represent sources of

variation that are not accounted for by the derived model. ξ1, ξ2, . . . , ξk will be the

input values for our model; in the airdrop model these are the aimpoint (x, y) and

the approach angle.
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Myers and Montgomery further discuss the sequential nature of response sur-

face methodology whereby initial hypotheses regarding the important input variables

take place, often backed up by a screening experiment. The screening experiment

identifies the variables affecting the response variable and which variables’ effects

should be investigated further. After screening takes place, they recommend the

use of a first-order model and the method of steepest descent, where starting from

an initially small portion (referred to by Myers and Montgomery as the region of

interest) of the overall search space, the user begins to move in the direction of the

optimal combination of input variables. Iteratively this method of steepest descent

is performed until a minimum for the response function is found in the local region

of interest. It should be noted that the minimum found by this technique is simply

a local minimum for the response function and is not guaranteed to be global.

In each local area of the drop scene, we need to find a local minimum if we

desire to obtain the global minimum. Therefore, we will consider the response sur-

face methodology of Myers and Montgomery. Specifically, when the random search

produces top candidates we will use RSM to improve the local solutions.

2.2.3 Differential Evolution. Storn and Price [94] present the differential

evolution heuristic for global optimization over continuous spaces, sometimes referred

to generically as genetic algorithms. Differential evolution does not rely on the cost

function to be differentiable or even continuous. The airdrop problem presents a con-

tinuous cost function, but one where the differentiation of the cost functions has no

closed-form solution. Differential evolution is a parallel direct search method which

utilizes D-dimensional (in the airdrop problem, 3-dimensional) parameter vectors as

a population for each generation G. The initial group of vectors is chosen randomly

and will cover the entire parameter space. DE generates new parameter vectors by

adding the weighted difference between two population vectors to a third vector in

a process called mutation. The mutated vector is then mixed with another prede-

termined “target” vector to yield the “trial” vector. The objective function value of
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the “trial” vector is compared to that of the “target” vector. In the selection step,

whichever vector has the lower function value will be the “target” vector for the

next generation. Each generation of vectors makes improvement in the cost function

value, and the mutations help prevent getting trapped in local minima. Addition-

ally, keeping DE vectors for each generation prevents trapping in the local minima.

The baseline model of Storn and Price is DE/rand/1/bin meaning that the initial

vectors are randomly chosen, there is one difference vector, and the crossover scheme

is binary distributed.

For constrained differential evolution, constraints are dealt with by the inser-

tion of a boundary penalty into the objective function [94]. Michalewicz and Schoe-

nauer [70] note that the methods for dealing with constraints in a genetic algorithm

can be handled in four ways:

• methods which preserve feasibility of the solutions,

• methods which use penalty functions, such as Storn and Price [94],

• methods which make distinctions between feasible and infeasible solutions, and

• hybrid methods.

Lampinen [58] discusses the laborious and difficult nature of the selection of

penalty parameters, and proposes a method that either preserves feasibility (if the

previous generation’s solution was feasible), moves towards feasibility (if both the

current and previous generations’ solutions are infeasible), or moves towards opti-

mality (if both generations’ solutions are feasible). The Lampinen approach doesn’t

rely upon starting solutions which are feasible. For the use of differential evolution

in the airdrop problem disallowing solutions that fall outside of the feasible region

would also be acceptable since the differential evolution method will not select these

disallowed solutions in the “selection” step of the algorithm. Michalewicz and Schoe-

nauer would classify this approach as a method which makes “distinctions between

feasible and infeasible solutions.”
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This approach appears to have merit. The airdrop problem does not have

overly complex constraints that preclude the easy generation of multiple, feasible

starting solutions, and the objective function is not differential - both properties

well served by evolutionary approaches.

2.3 Methodology

2.3.1 Formulation of Optimal Supply Airdrop Location. Assuming a bi-

variate normal distribution with known parameters σx, σy, and ρ, our formulation

is:

min
θ̂,x̂,ŷ

m∑
j=1

vj(1−
n∏
i=1

(1−
∫ xjmax

xjmin

∫ yjmax

yjmin

1

2πσxσy
√

1− ρ2
e

−[
(x−x̂i)

2

σ2x
−2ρ

(x−x̂i)
σx

(y−ŷi)
σy

+
(y−ŷi)

2

σ2y
]

2(1−p)2 dydx))

(9)

subject to θmin ≤ θ̂ ≤ θmax (if desired)

xmin ≤ x̂ ≤ xmax

ymin ≤ ŷ ≤ ymax

where m is the number of collateral objects

x̂i = x̂+ s(i− 1) sin θ̂

ŷi = ŷ + s(i− 1) cos θ̂

vj - value of the jth collateral object

x̂i - longitude of the aimpoint of the ith bundle

ŷi - latitude of the aimpoint of the ith bundle

θ̂ - approach angle

σx - horizontal miss distance standard deviation

σy - vertical miss distance standard deviation

n - number of objects in the airdrop bundle

s - distance of separation of the objects in the airdrop
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An important part of the formulation is that likelihoods of individual collateral

objects being struck must be modified to account for the possibility of multiple hits.

The overall probability of a hit is found by 1−
∏n

i−1(1−pi) where pi is the likelihood

of an individual airdropped object striking a specific collateral object. The value of

the collateral objects - that is the value of avoiding them - can be set to any positive

value; if they are to be treated equally then they are all set to 1. The solution to our

formulation is the aimpoint and approach angle which minimizes the total collateral

value of the bundles striking collateral objects, which is different than choosing the

aimpoint and angle which have the lowest likelihood of striking any collateral objects.

A final constraint is added to avoid unbounded solutions which occur any-

where outside the scene or potentially at the edge of the scene, because there is no

collateral damage to be avoided there. Based on our experience, we allow solutions

which produce only airdrops in which the middle of the bundle lands no closer than

two grid lines from the boundary of the scene. Remember, however, this does not

guarantee that all the objects in a bundle will actually land within the scene due to

the uncertainty of the bundle flight paths.

In the following section we introduce a base problem, motivated by a real-world

airdrop supply scene. It is intended to make concrete what we are doing and be the

starting point to develop test problems for the specific algorithms we will develop

and compare next.

2.3.2 A Drop Zone Problem Solved. Our drop zone is a sparsely populated

setting. This is typical of a humanitarian supply drop area selected to be near a

city, but not in the city. Figure 8 shows the scene we have defined with (shaded)

elements to be avoided and the optimal drop location and angle found (the series of

circles). Throughout this paper, the sizes of the elements shown in the drop scene

are to scale, while the sizes of the circles are proportional (but not to scale) to the
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magnitude of the standard deviations of drop errors. Let us discuss setting up and

solving this example in detail.

Figure 8: Scenario Layout with Optimal Aiming Location

We have chosen to characterize the search space as 1000 x 1000 meters with

100 (10 x 10) grid zones 100 m by 100 m, with the requirement that the middle

of the bundle object lands at least 200 m from the edge. Keeping the size of the

search space small is important, both because it determines the magnitude of the

optimization problem and it bounds the area where the recovery team will have to

travel to acquire the dropped supplies.

In this base problem, an airdrop plane traveling at 120 meters/second drops

objects 0.5 seconds apart. This yields a distance between the bundle objects of

60 meters so that with ten objects dropped there is a total path length of 540 m.

The drop technology involved has standard deviations of 100 m in both the x and

y direction (typical values across the types of airplanes and chute types that AMC

uses). Figure 9 collects this data together and is actually the format of an input

screen for our solution program.
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Figure 9: Input Parameter Table

The collateral objects, and their avoidance values, are entered via another ta-

ble. Figure 10 contains the data for our base problem with 20 collateral objects. For

the purposes of this paper, collateral objects are taken to be rectangular facing the

axes of the coordinate system. (As an aside, circular buildings are well represented

by a square.) Complex shapes can be built with several rectangles. A larger object

could in fact be a cluster of buildings. This scenario intentionally includes a variety

of objects with lengths and widths between 10 and 100 meters. We are envisioning

every collateral object as being occupied housing with equal avoidance value. Of

course if an object is known to be just a barn, its value could be decreased.

Note that we have chosen to use a coordinate system of the cardinal directions.

This is not required but it makes planning with maps, GPS, or satellite imagery easier

and, regardless, the solution algorithm picks its optimal angle in terms of whatever

coordinate system is selected.
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Figure 10: Collateral Objects

In terms of solution, collateral objects and their values determine the more

attractive drop paths and locations. Figure 8 shows the true optimal solution in

this scenario. Unsurprisingly, the optimal aiming location for the bundles lies in the

rather large gap in the buildings on the western side of the layout. Dropping in this

location yields a minimum objective function value of 0.088 which means that, in

an individual bundle drop, an average of only 0.088 collateral objects will be struck

(since each object has a value of 1) by the ten bundle objects. Note that there is a

small chance that some of them may be struck more than once.

2.3.3 Solution Methods. In this section, we undertake a series of studies

comparing, combining, and evaluating the global search methods of Section 2.2 to

solve the formulation of Section 2.3.1 for problems of the type in Section 2.3.2.

2.3.3.1 Surrogate Functions. Regardless of the search approach used,

calculations of the cost function are computationally expensive since there must be a

complicated integral computed at each point on the grid that lies within a collateral

object. Surrogate functions are routinely used in evolutionary algorithms when the

cost function is complicated and requires a large amount of processing time. This

is the case for the multiple integrations of the bivariate normal distribution for

the airdrop collateral damage problem. To combat this, for the first number of
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generations of differential evolution we will use a surrogate function which requires

less processing time. The key, however, is to find the correct number of generations

at which to make the switch between using the surrogate cost function and the actual

cost function. Using the surrogate cost function too long will result in convergence to

a sub-optimal solution (a solution that is optimal for the surrogate function, but not

the true cost function). Switching to the actual cost function too soon will negate

the time savings gained by using the surrogate cost function.

The surrogate function created for the integration of the bivariate normal dis-

tribution will be based on an approximation of its probability density function (pdf).

By experimentation, we find that just four rectangular prisms approximate this pdf

adequately. Figure 11 shows graphically the normal distribution approximation used

for the surrogate function.

Figure 11: Surrogate Approximation of the Normal Distribution

As evidence of the accuracy of the 4-point surrogate, Figure 12 compares the

objective function value of the surrogate normal to the actual probability value

for over 10,000 bundle object and collateral object impacts. The graph shows low

error and high correlation (0.894) between the two functions. The speed-up of the

surrogate does not deter the accuracy of the search to optimum.
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Figure 12: Surrogate versus Actual Objective Function

2.3.3.2 Differential Evolution Algorithm. We have implemented the

differential evolution method described in Section 2.2.3 and Figure 13 created by

Storn and Price [94]. The differential evolution algorithm has as its key inputs the

number of generations and the number of solutions within the generations. After a

series of trials we find the following constants for the differential algorithm provided

convergence to one solution while keeping the run time for the algorithm low: F =

0.8, CR = 0.5, NP = 40, and generations = 100. This means there are 4,000 separate

calculations of the objective function.
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Figure 13: Differential Evolution Algorithm

2.3.3.3 Differential Evolution with Surrogate. We have implemented

two variations of the Differential Evolution algorithm where the surrogate function is

used to speed up the process. In the first variation, the initial 50% of the generations

use the surrogate function, and in the second the surrogate function is used in 100%

of the generations. Once the final generation of solutions is obtained, those locations

have their true objective function values calculated and then compared in order to

determine the best solution. Random starting points within the user-defined grid

initialize both algorithms.

2.3.3.4 Response Surface Algorithm. For the response surface al-

gorithm, the solution space is initially searched in order to find good candidate

solutions. This step is accomplished by uniformly searching the solution space, find-

ing the best ten solutions and then using these ten solutions as inputs to the second

phase of the algorithm. The second stage takes each of these ten solutions and then

determines the regression equation about each solution. From there (again, for each
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solution) movement is made in the direction of the steepest descent by a given step

size. Those new ten solutions then become the inputs and the process is repeated

with smaller step sizes, for a given number of iterations. Finally, the ten result-

ing solutions are compared to determine the best solution. For the response surface

method in our base problem scenario, for example, there were 7*7*35 + 2*2*3*10*10

= 2915 separate calculations of the cost function computed.

Once the ten best solution vectors from enumeration are found, each solution

is treated as the starting point and the algorithm in Figure 14 is performed:

Figure 14: Response Surface Methodology Algorithm

2.3.3.5 Response Surface Methodology with Surrogate. We have also

programmed the response surface algorithm with surrogate method using the sur-

rogate objective function to perform the enumeration step before switching to the

true objective function for the response surface portion. Thus, the best ten solutions

from the surrogate objective function are found and on these solutions the response

surface algorithm is performed (using the true objective function), giving movement

towards better solutions moving from these ten solutions for a series of iterations.

Examples of the search movement are shown in Figure 15. Starting points are at

the grid intersections and the points are the midpoint of the bundle drop. This

figure shows the unique nature of search evolution in our problem wherein the angle

changes during the search and not merely the location.
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Figure 15: Steepest Descent Movement in RSM

2.3.3.6 Enumeration. One might ask, why not simply evaluate at

many points in the drop area and pick the best one of those as the estimate of the

global optimum? The problem is computational effort - when searching the entire

solution space in an enumerative manner, the size of the steps taken has a significant

effect on both the optimal solution found and the number of trials necessary to

find the optimal solution. As the step size approaches zero, the number of trials

approaches infinity at a rate inversely proportional to the cube of the step size (since

this is a three-dimensional problem). Additionally, as the step size approaches zero,

the solution found approaches the true optimal solution for the scenario. Figure 16

shows, in fact, this tradeoff in our base scenario problem. Enumeration can, in fact,

find the optimal solution of 0.088. The problem is that, for our example, it requires

673,501 computations of the objective function.
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Figure 16: Optimal Result and Calculations vs. Step Size

Nevertheless, enumeration offers a comparison value in terms of accuracy and

speed. We have gone so far as to implement enumeration with the surrogate tech-

nique. We will also evaluate the behavior of enumeration on a coarser grid.

2.4 Global Search Results

In this section, we compare all of the algorithms introduced in this paper. The

merit metrics are running time and accuracy. The results are all solutions to the base

scenario of Section 2.3.2; however our computational experience leads us to believe

that the relative performance of the algorithms is the same on other problems of our

type.

In addition, we investigate the behavior of solutions for a wide range of scenario

variations that a planner might face. This serves the purpose of validating our

work and, more importantly, reveals tradeoffs and improvement methods that we

consistently find.
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2.4.1 Comparison of Search Algorithms. Figure 17 collects the results of

our algorithm comparison studies. As discussed earlier, there are three DE algo-

rithms, three enumeration algorithms, and two RSM algorithms. Let us first look

within the algorithm types and then across them.

The DE algorithm consistently finds (and should by its design) the best solution

because it is defined in terms of the true objective function. Surrogacy speeds the

calculation up, but the quality of the solution can suffer.

The enumeration algorithm benefits the most from surrogacy because of the

high number of objective function evaluations required. Trying to improve compu-

tational time by using a coarser grid does not work as the solution quality inevitably

suffers. This is the behavior we saw in Figure 16.

The RSM algorithm produces high quality results but has the limitation of

always approximating the true objective function. This is compounded by the sur-

rogacy approximation. With that said, RSM still produces good quality solutions

consistently in a reasonable time.

Figure 17: Summary of Results for Techniques

Figure 18 summarizes the computational cost versus solution accuracy of the

algorithms. Computational cost is calculated as the number of calculations of the

true objective function plus 25% of the number of calculations of the surrogate

48



function (that being the approximate savings). The lower left corner of Figure 18 is

the most desired having a low calculation time and a low optimal solution value. The

computationally-intensive method of enumeration is dominated and is not the way

to approach solving this class of problem. The remaining Pareto optimal approaches

then are differential evolution, response surface method using the surrogate function,

and the differential evolution method using only the surrogate function.

Figure 18: Results of Various Methods

We feel that, although it is fast, the DE with 100% surrogate gives away too

much in terms of accuracy. Either of the other two Pareto methods is a good choice,

depending on the tradeoff for the planner in terms of speed versus accuracy. For

example, using a 2.7 GHz desktop PC with 4.0 GB RAM, we obtain solutions to the

base problem in a few minutes of clock time. So, choosing pure DE might mean an

8 minute response time versus a 2 minute response for RSM with surrogate (whose

solution might be 1-2% worse). For accuracy, and consistency of comparison, we use

DE for all the remaining case studies in this paper.
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2.4.2 Guidelines to Airdrop Planners. In this section, we solve fourteen

variations of a new airdrop problem (Scenario #1 below) using the techniques de-

veloped in this paper to explore the effects of changing inputs (the drop technology,

the scene itself, etc.). The variations represent real-world situations that an airdrop

planner might face.

Choosing bundle configurations:

• Using bundles of size five rather than ten. This investigates the impact of two

missions of five versus one mission with a size ten bundle (Scenario #2).

• Using a bundle separation distance of 30 meters rather than 60 meters. This

shows the benefit of a plane traveling slower over the dropzone (#3).

Choosing drop technology (the standard deviation values were taken from Figure 6):

• Using higher (#4), lower (#5), and unequal standard deviations (#6) to gener-

ally underscore the effects of accuracy in delivery systems on collateral damage.

• Specifically using an LCLA chute at 1000 feet (the lowest standard deviations

of all chute-altitude combinations) (#7).

• Specifically using an LV chute at 3000 feet (the highest standard deviations of

all chute-altitude combinations) (#8).

• Specifically using an LV chute at 1000 feet (the most common chute-altitude

combination) (#9).

• Specifically using an HV chute at 2000 feet (the most common HV altitude)

(#10).

Effect of changes in the nature of collateral objects:

• Using differing values for the collateral objects rather than all collateral objects

having the same values. Collateral objects are randomly given values between

0 and 2 rather than the previous common value of 1 (#11).
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• Using smaller collateral objects ranging from 10 x 10 meters to only 30 x 30

meters rather than up to 100 x 100 meters. This demonstrates the benefit of

more accurate intelligence on the nature of the collateral objects in the drop

scene (#12).

• Using ten collateral objects in the scene rather than twenty demonstrating the

benefit of moving to more sparsely populated areas (#13).

Consequences of limitations in travel over the drop scene:

• Using a flying angle constraint (this is the “as desired” constraint in our formu-

lation). This demonstrates that weather, terrain, or other safety flying logistics

can have detrimental consequences on drop risk. (#14)

The inputs and results for all scenarios are presented in Figure 19, wherein the

last column is the damage value at optimum (lower is better). Like scenarios are

grouped together.

Figure 19: Summary of Results for Scenarios
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Figure 19 demonstrates that cutting the standard deviation in half from 100

meters (#1) to 50 meters (#5) lowers the expected amount of collateral damage risk

by 93%, underscoring the need for accurate delivery systems. The vast improvement

possible by a technologically-advanced delivery system can be seen in the near-zero

damage caused when using the LCLA chute type from 1000 feet (#7). Conversely,

the LV chute type from 3000’ (#8), with its large standard deviations has a collateral

damage risk 61% higher than the standard case (#1).

Figure 19 also shows the sharp decline in expected damage from lowering the

number of collateral objects (#13) or decreasing the size of collateral objects (#12).

This is to be expected (and quantified by our model). It is more surprising, that a

50% decrease in the separation (#3) from flying slower yields only a small decrease

in expected collateral damage (25%).

Let us turn from the optimum values of the objective function to the changes

in the location and angle of drop. Figures 20 through 26 depict the optimal aiming

locations and angles from Figure 19 for all fourteen scenarios:
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Figure 20: Varying Bundles - #1, 2, 3

Figure 21: Varying Standard Deviation - #1, 4, 5, 6
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Figure 22: Chute Type - Altitude - #7, 8, 9, 10

Figure 23: Varying Collateral Values - #1, 11
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Figure 24: Smaller Collateral Objects - #12

Figure 25: Fewer Collateral Objects - #13
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Figure 26: Constrained Flying Angle - #14

• While any change in the inputs may result in a vastly different area of the

grid in which to drop, in the examples chosen we see that fewer bundles (#2),

smaller bundle separation (#3), or smaller collateral objects (#12) did not

greatly move the aimpoint from the standard case (#1).

• Changing the standard deviations (#4, 5, 6) not only has a tremendous effect

on expected collateral damage, but can drastically change the location of the

optimal solution.

• Changing the values of the collateral objects (#11) has a major effect on op-

timal location. This is true even if the average collateral object value is the

same. Both the standard scenario (#1) and the varying value scenario (#11)

have average collateral object value of 1, yet #11 has a 34% lower objective

function value.
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• Decreasing the size of the collateral objects (#12) yields little movement in the

optimal aiming location from the standard case (#1), but over a 90% decrease

in the expected amount of collateral damage.

• Fewer collateral objects (#13) results in 50% less of the scene covered by collat-

eral objects and smaller collateral objects (#12) resulted in 89% less coverage

of the scene. However, fewer collateral objects results in less damage indicating

that it is better to have more collateral object area that is concentrated rather

than less collateral area that is spread out.

• The constrained angle scenario (#14) demonstrates the potential risk when

airdrop flight paths are restricted by weather, terrain, or other safety/logistics

concerns. In this scenario, the flight paths are constrained to be within ten

degrees of due north. From the standard scenario, we see a 29% increase in

the expected amount of collateral damage.

2.5 Results and Discussion

In this paper, we present a characterization of the distribution of supply air-

drops and methods for optimally dropping them. Specifically, supply airdrops follow

a bivariate normal distribution in which the x and y deviations are uncorrelated

(ρ = 0). A surrogate approximation function for the bivariate normal distribution

supports quick integration of the distribution to assess drop risk. RSM with surro-

gate, and DE, both return Pareto optimum results depending on a tradeoff between

runtime and accuracy. Both find near-optimal solutions of the non-linear program

resulting from the airdrop problem, quickly finding settings for both an airdrop

location and an approach angle. Enumeration is strongly dominated by all other

algorithms.

It is natural to ask whether an expert eye is a substitute for algorithms. It

turns out not. Suppose an airdrop planner who has been shown the oval shapes and

scales of a bundled set of a supply airdrop could predict the optimal aimpoint within
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50 meters in each direction and the drop angle within 5 degrees angle of the optimal

solution. Note that this is a high standard - we have looked at hundreds of combi-

nations of drops, yet still only approach that level of accuracy. In our base problem,

where the collateral objects have the same weighting, the planner “eyeballing” a

solution would have a collateral risk 14% higher than the optimum. In more com-

plicated scenarios where the collateral objects are weighted differently, “eyeballing”

a solution becomes much worse than the solutions found by our algorithms, with

“eyeballed” solutions routinely worse by 20% or more. A more reliable technique

must be implemented to limit damage and ensure recoverability.

In terms of future work, we have two ideas. First, rather than using bounds on

the x and y directions to limit the bundle drop zone, an attractor function could be

incorporated, which would approximate the likelihood of recovery as a distance from

a given point (typically the middle of the scene). The attractor function would be

weighted and added to the objective function for the problem. Second, automating

chute selection when not all missions would be able to use the most accurate types

of chutes has appeal. For example, in the case where an inventory of flights/chutes

is available to cover a set of drop zones, we would optimize not just the individual

drop but the portfolio of drops determining which chutes should be used for which

mission to minimize the overall risk of collateral damage.
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III. Pareto-Optimality for Lethality and Collateral Risk in the

Airstrike Multi-Objective Problem

3.1 Introduction

Sources estimate that at least 6,000 to 9,000 civilian casualties [38] [98] [45]

have occurred in Afghanistan since the beginning of the Global War on Terrorism

(GWOT) as a direct result of Coalition military actions. More specific to the United

States Air Force (USAF), over 1,000 civilian deaths have occurred since the incep-

tion of GWOT due to air strikes [38]. In addition, property damage resulting from

airstrikes in Afghanistan to civilian-owned buildings has alienated some local resi-

dents and ruined goodwill created between NATO and anti-Taliban citizens [89].

The Chairman of the Joint Chiefs of Staff Instruction on No-Strike and the

Collateral Damage Estimation (CDE) Methodology from 2009 [25] gives the U.S.

Military its guidance on the subject of collateral damage. The document lays out

such things as which types of buildings/structures are typically parts of a no-strike

list and under which circumstances a commander may fire upon buildings known to

contain collateral objects or people. The document touches on the use of human

shields by the adversary, special restrictions on targets which may cause grave en-

vironmental or biological concerns, and the roles of personnel within the targeting

process.

Of primary importance, the Instruction provides the collateral damage method-

ology (CDM) process which seeks to be “simple and repeatable” in order to provide

“a reasonable determination of collateral damage inherent in weapons employment.”

CDM is presented in five levels of increasing risk of collateral damage. A target will

progress from level 1 until such point as it is no longer necessary to progress, thus

making the target (and associated collateral risk) categorized as either CDE Level

1-Low, 2-Low, 3-Low, 4-Low, 5-Low or 5-High. Within CDM, weapons (and their

method of employment) have assigned circular errors probable (CER) which give
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“a radius representing the largest collateral hazard distance for a given warhead,

weapon, or weapon class considering predetermined, acceptable collateral damage

thresholds that are established for each CDE level.” From the CER, a collateral

hazard area (CHA) is typically created by rotating this radius around the aimpoint

of a weapon to create a circle. Collateral objects falling within that CHA for a

given CDE level cause the target to be elevated into the next higher CDE level for

further evaluation, until finally a CHA is created with no collateral objects within

its boundaries, or the rating of CDE level 5-High is given to the target.

The CERs for given weapons and methods of employment only spell out the

radius outside of which a collateral object should be safe from the weapon’s firepower.

This approach to the estimation of a weapon’s power is known as the “cookie-cutter”

approach, whereby all objects falling within the radius are considered to be destroyed

and all targets falling outside of the radius are 100% safe. While simple and easy

to implement, this assumption can be detrimental in the planning process for a

weapons strike. The distribution, and not just the lethal range, of the weapon has a

significant effect on the choice of an optimal aiming location and weapon selection.

This paper seeks to quantify the effects of different weapon damage functions along

with the effect of improvements made to the current policy guiding collateral damage

mitigation.

3.2 Background

3.2.1 Collateral Damage Estimation. In the literature the probability of

destroying a point target is calculated with the following formula [64] [82]:

P =

∫
x

∫
y

p(x, y) · d(x, y)dydx (10)

where
P - probability that the point target is destroyed,
p(x, y) - probability density function of the weapon’s impact point,
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d(x, y) - probability that the point target is destroyed given that the weapon impacts
at point (x, y).

In Equation 10 we indicate that lethality at a particular point (x, y) in space

is both a factor of the uncertainty of the landing location (p(x, y)) and the damage

caused at a given point in the case that it lands at a particular point in space (d(x, y)).

Therefore, collateral damage estimations can be made by knowing the location error

function and the damage function for the particular weapon.

The most commonly used location error formula for an air-to-ground weapon

is [64]:

p(x, y) =
1

2πσ2
e−(1/2σ

2)((x−µx)2+(y−µy)2) (11)

where

µx - x-coordinate of aimpoint,

µy - y-coordinate of aimpoint,

σ - standard deviation of the miss distance for the weapon.

This formula is the bivariate normal distribution, where the x and y miss

distances are both uncorrelated (ρ = 0) and the distributions in both the x and y

directions are identical (that is σ = σx = σy) [29]. To account for situations where

the miss distances in the x and y directions are different (σx 6= σy), yet uncorrelated,

one can use [34]:

p(x, y) =
1

2πσ2
e
−[ (x−µx)

2

2σx
+

(y−µy)2

2σy
]

(12)

For uncorrelated miss distances in the x and y directions (ρ 6= 0) we must use

a more complicated formula [32]:

p(x, y) =
1

2πσxσy
√

1− ρ2
e
−[ (x−µx)

2

2σx
− 2ρ(x−µx)(y−µy)

σxσy
+

(y−µy)2

2σy
]/2(1−ρ)2

(13)
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A variety of damage functions are used for a variety of reasons, such as simplic-

ity, accuracy in modeling the data, and ease of computation. Additionally, different

types of air-to-ground weapons will have differing patterns of damage. The uniting

characteristics of these functions is that they are decreasing functions as the radius

(distance from point of impact) increases, their integral
∫∞
0
d(r)dr is bounded, and

they are “well-behaved” [64], meaning that either there exists a radius R such that

for all r > R, d(r) = 0, or their function is continuous and monotonic.

Cookie-Cutter: d1(r) =

1, r ≤ LR

0, r > LR

(14)

Gaussian: d2(r) = e−r
2/2b21 (15)

Exponential: d3(r) = er/b2 (16)

Lognormal: d4(r) = 0.5{1− erf [
ln(r/α)√

2β
]} (17)

The continuous damage functions come from 1-CDF of the probability func-

tions (e.g. the exponential distribution which has a PDF of f(r, b2) =

b2e
−b2r, r ≥ 0

0, r < 0

,

yields a CDF of F (r, b2) =

1− e−b2r, r ≥ 0

0, r < 0

, which in turn creates the damage

function d3(r) = 1 − (1 − e−r/b2) = e−r/b2 .) Typically, the lethal range of a weapon

is calculated as
∫∞
0
d(r)dr [64], thus in order to get a realistic comparison between

damage functions, we must ensure that the lethal ranges using each of the damage

functions is the same, therefore making it necessary to tweak the constants in the

functions. For the exponential damage function b2 is exactly equal to the lethal

range of the weapon since
∫∞
0
d3(r)dr = b2. In the Gaussian damage formula the

value for b1 can be shown to equal LR×
√

2/π. As noted in [82], since the lognormal

damage formula has two inputs (α, β) there is no unique setting for the inputs to
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give a certain lethal range. For example, in Figure 27, the settings for the lognormal

damage function are α = 0.615 and β = 1, which can be found using the graph in

Figure 27 for LR = 1. The PDF for each of the damage functions with a lethal range

of 1 are depicted in Figure 28.

Figure 27: Lognormal Damage Function Inputs for Desired Lethal Range

Figure 28: Damage Functions (LR=1)
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3.2.2 Lethality Functions. Combining the damage function with the loca-

tion error function (with the assumption of ρ = 0 and σx = σy) yields the following

lethality function which is the expected amount of damage at a given distance from

the aim-point (x′, y′): ∫
X

∫
Y

p(x, y, x′, y′)d(x, y)dydx (18)

By converting (x, y) into a distance r from (x′, y′), we can then inspect the

shape of the lethality functions based on the different damage functions d(x, y).

In the case where the standard deviations are 1 unit and the lethal range of the

weapon is 1 and 5 units, respectively, we generate the following graphs of the lethality

functions:

Figure 29: Lethality Functions (LR=1)
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Figure 30: Lethality Functions (LR=5)

Figures 29 and 30 give insight as to which functions over- or under-estimate

lethality and at which ranges. For example, in both graphs the cookie-cutter ap-

proach gives a higher result at the aimpoint (r = 0) than the other approaches.

This is particularly pronounced in Figure 30 where the cookie-cutter approach yields

lethality almost 75% higher than the lognormal and exponential damage functions at

a distance from the aimpoint of 3. This phenomenon will always be most pronounced

when the lethal range is high relative to the standard deviation of the miss distance

of the weapon (in these two examples, the standard deviation of the miss distance

for the weapon is 1). In the extreme case where the accuracy is degraded (yielding a

high standard deviation) then the cookie-cutter approach will yield a smaller value

at the aimpoint than the other approaches.

Lucas [64] goes into detail about the limiting behavior of each of the damage

functions, noting that the lethality of the cookie-cutter function drops off the fastest

when at higher distances from the aimpoint. This fact could be surmised from the

very quick drop of the cookie-cutter approach in Figure 29 and particularly in Fig-

ure 30. Further, Lucas [64] proves that the lognormal damage function has higher

lethality in its tail as r goes to infinity than any of the other damage functions, fol-
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lowed by the exponential, then the Gaussian, and finally the cookie-cutter approach,

which has the lowest lethality in its tail. These insights about the limiting behavior

of the lethality functions are irrespective of the accuracy of the weapon.

3.2.3 Offset Aiming. The concept of offset aiming is integral to the dis-

cussion of the minimization of collateral damage. Offset aiming is the concept that

directly targeting military objects is not always optimal. For example, if a mili-

tary target is located directly west of a collateral object (say, a school) and a given

weapon striking the military target directly with the chosen weapon would carry

enough force to significantly damage the school, then perhaps aiming slightly to the

west of the military object would be optimal. The weapon and its lethality function

might indicate that aiming 10 meters to the west of the military object would still

employ enough firepower to accomplish the military objectives while the extra ten

meters would put the school outside of the lethal range of the weapon, thus lowering

any negative effects on the school.

Offset aiming is already part of the Department of Defense’s (DoD) official

policy on collateral damage estimation and mitigation. However, offset aiming is not

considered until later levels of the CDE guidance. There is an argument to be made

that offset aiming should be considered at all levels of the CDE process.

3.2.4 Weapons Employment as a Multi-Objective Problem. The current

DoD policy on collateral damage indicates that collateral damage estimation must

be performed prior to any pre-planned air-to-ground strike. A commander must be

made aware of collateral risk in the area surrounding the military target and be

provided with detailed collateral damage estimation before giving orders to strike.

Efforts must be made to avoid collateral damage at a high cost, and the commander

then decides if the amount of collateral risk is worth the military value of striking

that target. Within CDE, differing weapons, aimpoints and methods of employment

are considered in an attempt to satisfy military objectives in the face of collateral
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risk. The two concepts, military objectives and collateral risk, are played off against

each other in order to create a mission plan that the commander is willing to support.

La Rock [57] discusses a multi-objective approach towards weapon implementation

taking into consideration collateral effects.

Typically, as the mission plan seeks to lower the collateral risk, the lethality on

the military target suffers. The converse is also true, as the lethality on the target

is sought to be increased, the risk to collateral objects in the area also increases.

The lethality functions mentioned in the previous section are the same for both

collateral objects and military targets; however, the goal is to minimize the lethality

on collateral objects and maximize the lethality on military targets.

3.3 Formulation

For a given damage function d(x, y) and a known delivery error function p(x, y),

we may begin to characterize the multi-objective function we seek to optimize for a

given scenario.

Goal: Max f1(x, y) (lethality on the military target) (19)

Min f2(x, y) (lethality on collateral objects)

where

f1(x, y) =
∫
X

∫
Y
p(x, y, x′, y′)d(x, y)dydx

f2(x, y) =
∑n

i=1 ci
∫
X

∫
Y
p(x, y, xi, yi)d(x, y)dydx

p(x, y, xi, yi) = 1
2πσ2 e

−(1/2σ2)((x−xi)2+(y−yi)2)

(x′, y′) - location of the military target

d(x, y) - damage function for weapon

n - number of collateral objects in the area of concern

(xi, yi) - location of the ith collateral object

ci - value of the ith collateral object
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σ - standard deviation of weapon miss distance

Damage function specific inputs

α, β - lognormal damage function

b1 - exponential damage function

b2 - Gaussian damage function

LR - cookie-cutter damage function

The values of the collateral objects are typically subjective based on the desire

to avoid striking them. The higher the value the more concern the planners have for

avoiding this structure/area. The inputs to the lethality function are the lethal range

of the weapon, the damage function to be used (along with choices of either alpha

or beta for the lognormal function), and the accuracy of the weapon (the standard

deviation of the miss distance).

3.3.1 Goal Programming Formulation. Once offset aiming is introduced

to achieve collateral damage mitigation, a goal-programming approach can then

be employed to get an accurate comparison between the damage functions’ effect

on both lethality and collateral damage. For instance, we could stipulate that the

lethality on the military target must be above a certain number, say 90%. If this were

our assumption, then our secondary goal would be to then find the point that satisfies

this requirement while trying to minimize the collateral damage. We will call this

approach the lethality first approach, or in this case the 90% lethality first approach.

Conversely, if we wanted to use a constraint of no more than 10% collateral risk,

we would start by eliminating all aimpoints that don’t first satisfy this constraint.

From there, we would then search the space that maximizes lethality on the military

target; this will be the collateral first approach.

If we can turn either of the two objective functions into a constraint, then this

problem is simply a single objective non-linear objective problem with an additional
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constraint from the other objective. There will now be just a single solution (in our

case, a single point (x, y) in the scenario) which optimizes our objective.

The new formulation for the collateral first approach becomes:

Goal: Max f1(x, y) (20)

subject to: f2(x, y) ≤ c

For the lethality first approach the formulation becomes:

Goal: Min f2(x, y) (21)

subject to: f1(x, y) ≥ c

with the same constraints and definitions from Equation 20. In cases where the miss

distance standard deviations in the x and y directions are the same, then f1 will

have the same value for all points which are the same distance from the location of

the military target. Therefore, f1(x, y) can be thought of as f1(r) where r is the

distance from the point (x, y) to the location of the military target (x′, y′). That is,

f1 is symmetric about the location (x′, y′).

Solution techniques for solving non-linear programs such as response surface

methodology and evolutionary algorithms are logical candidates. To further charac-

terize our objective function, we observe that it is continuous, since each of the lethal-

ity functions are continuous (even the cookie-cutter lethality function). Therefore,

non-linear optimization techniques which rely upon a continuous function should be

tried, while techniques which are more suitable for discontinuous functions are less

logical (such as tabu search, branch-and-bound, etc.)

3.3.2 Weighted Sum Scalarization. In a similar vein, to convert multi-

objective optimization problems into single objective optimization problems, weights

can be given to the multiple objective functions. In this case, the sum of the weighted
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function values is calculated in an effort to minimize (or maximize) the total. In our

problem, since we seek to maximize lethality (f1) and minimize collateral risk (f2),

then opposite signs are given to the two functions:

Goal: Max w1f1(x, y)− w2f2(x, y) (22)

subject to: w1 + w2 = 1

The weighted sum scalarization approach presents a decision analysis problem

since now we must construct weights for the value of collateral objects relative to

the value of increased lethality on the military target. Of important note is that

any solution to the weighted sum scalarization approach or any solution to the goal-

programming approach will be a point on the Pareto front for the problem.

3.3.3 Multi-Objective Formulation. If we choose not to employ either

goal-programming or weighted sum scalarization as a technique to combine the two

objective functions into a single objective function (or a single objective function

with an added constraint), then we can use a multi-objective optimization approach.

When there is more than one objective function, there are (often) infinitely many

solutions that lie on the Pareto front for the particular problem. Assuming that all

objective functions attempt to minimize the response, the Pareto front is the set of

solutions (x′, y′) such that there exists no other solution (x, y) for which fk(x
′, y′) ≤

fk(x, y) for all k from 1 to the number of objective functions and fk(x
′, y′) < fk(x, y)

for at least one value of k. These points in the Pareto front are non-dominated by

any other solution.

Algorithms to identify the entirety of the Pareto front are difficult to find,

especially for problems where the objective functions are complex, such as in the

collateral damage airstrike minimization problem. The majority of the literature on

solving multi-objective optimization problems depends on evolutionary algorithms

[19]. For instance, differential evolution approaches [2] [107] [104] [9] use mutation
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and combination methods developed for a single objective algorithm by Storn and

Price [94]. We will compare the differential evolution algorithm of [2] against the

algorithm we created to solve our multi-objective problem in the following section.

3.4 Methodology

In this section we will compare a differential evolution algorithm to a radius-

based search method that leverages off the nature of the airstrike multi-objective

formulation. The radius-based search method is shown to run in a fraction of the

time of a differential evolution algorithm and produce better results. This radius-

based search algorithm relies on the fact that with only a single military target in

the region of interest, we can express the lethality function f1 in terms of only the

distance from the target. Thus, any point that is Pareto optimal must have the

lowest collateral risk for all points the same distance from the target. The converse

is not true; that is, a point which has the lowest collateral risk for all points the same

distance from the target is not guaranteed to be Pareto optimal.

Further, while not guaranteed that all Pareto optimal solutions lay on a con-

tinuous line, in practice, we find that this is the case in nearly all scenarios. Since we

are guaranteed the strictly decreasing nature of the lethality functions (regardless

of their underlying damage functions), the location of the target is a Pareto opti-

mal solution. Therefore, the continuous line emanates from the target location and

extends to the edge of the scene. This is consistent with the graphs of the Pareto

optimal solutions in the figures earlier in this section.

Figure 31 shows our radius-based solution algorithm which accurately estimates

the Pareto front and Pareto optimal solutions.
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Figure 31: Radius-Based Search Algorithm

3.4.1 Prototype Problem. Using the formulation laid out in the previous

section, we may now begin to picture what the objective functions look like over

the range of possible solutions. For the examples in this section, we will use the

assumption that the scene is a 100 meter by 100 meter square. There is a single

military target in each scene along with a number of equally weighted collateral

objects that we seek to avoid damaging. With a miss distance standard deviation

and a lethal range provided for the weapon used, contour plots can be developed for

each of the damage functions. From these contour plots, it is very easy to identify

where both the military targets and collateral objects are located within the scene

(each of the contour plots is based on the same scenario). Figures 32 and 33 show

the lethality functions and the collateral objects for our prototype problem.
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Figure 32: Lethality Function

Figure 33: Location of Collateral Objects

To help visualize the nature of solutions, Figures 34 - 37 plot the two objective

functions for the prototype problem using the four different damage functions (the
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lethality function is on the left and the collateral risk function is on the right).

The cookie-cutter damage function (in Figure 36) shows the fastest drop-off of any

of the damage functions yielding more distinct humps in the collateral risk graph

surrounding the twenty collateral objects. Contrast this with the exponential damage

function collateral risk graph (Figure 35) where the humps surrounding the collateral

objects are much more blurred as a result of a more gradual decline in the lethality

function for the exponential. The lognormal and Gaussian damage function graphs

fall between the two extremes of the exponential and cookie-cutter graphs.

Figure 34: Gaussian Damage Function

Figure 35: Exponential Damage Function
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Figure 36: Cookie-Cutter Damage Function

Figure 37: Lognormal Damage Function

Using enumeration (finding the lethality and collateral risk at a very fine resolu-

tion, 1000x1000, in the solution space), we find the non-dominated points. Figures 38

- 41 show the objective function values for all points in the scene (sampled every me-

ter in the x- and y-directions) in the leftmost graphs with the higher lethality on the

left edge and the lower collateral risk on the lower edge. The middle graphs show the

non-dominated (Pareto-optimal) points in the objective space, which are those points

on the “southwest” edge of the left plots. These points are non-dominated since no

other point in this space has both a lethality value higher and a collateral value lower

than these points. The right graphs show the location of the non-dominated points

in the solution space.
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Figure 38: Gaussian Damage Function

Figure 39: Exponential Damage Function

Figure 40: Cookie-Cutter Damage Function

Figure 41: Lognormal Damage Function
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One may not be surprised to see that the location of the military target is

among the Pareto optimal points since no other point would have a higher lethal-

ity value than this point (due to the decreasing nature of the functions in Fig-

ure 29 and 30.) Keeping in mind that these functions were all tested with the

same lethal range, accuracy and scenario, the cookie-cutter function estimates much

higher lethality on the target and much lower collateral risk than the other dam-

age functions. The Gaussian function (Figure 38) demonstrates significantly higher

lethality on the target than the exponential and lognormal damage functions, but

the collateral risk among these three damage functions is fairly comparable.

In the next section, we undertake the comparison of the algorithms discussed

earlier and comparison metrics are introduced. The goal is to quickly and accurately

locate the Pareto optimal solutions.

3.4.2 Algorithm Performance. Zitzler et al. [106] present methods for

judging the effectiveness of algorithms for finding the Pareto front in multi-objective

optimization problems. The first metric (accuracy) measures the minimum distance

from the found solutions to a point on the true Pareto front (lower is better). The set

of solutions found in the objective space are Y ′ and the true Pareto optimal frontier

in the objective space is Ȳ :

M1(Y
′) :=

1

|Y ′|
∑
a′∈Y ′

min{‖ a′ − ā ‖; ā ∈ Ȳ }. (23)

The second metric (diversity) measures the number of solutions found within a

distance of σ from each found solution. This indicates how distinct found solutions

are from one another (lower is better):

M2(Y
′) :=

1

|Y ′ − 1|
∑
a′∈Y ′

|{b′ ∈ Y ′; ‖ a′ − b′ ‖< σ}|. (24)
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The final metric (breadth) gives the maximum distance between found solu-

tions for each coordinate. As noted in [18], for a two dimensional problem such as

the collateral risk problem, this equals the distance of the two outer solutions (higher

is better):

M3(Y
′) :=

√√√√ m∑
i=1

max{‖ a′i − b′i ‖; a′, b′ ∈ Y ′}. (25)

Using these metrics, we compare the radius-based algorithm to enumeration

and a differential evolution approach detailed in Figure 42.

Figure 42: Algorithm Performance (Prototype Problem)

Figure 42 compares the performance of our radius based search, a differential

evolution algorithm, and enumeration (best results in bold). The radius based al-

gorithm takes 37 minutes on a 2.60GHz machine to run, whereas the differential

evolution approach takes almost four hours and the enumeration approach takes

more than a week to compute. Our algorithm demonstrates the ability to generate

points close to the true Pareto front for the prototype problem for all four damage

functions as seen by the low values for metric 1. Metric 2, which measures the amount

of points in the objective space within 0.001 of each other yields mixed results, with

our algorithm generating the lowest totals for two of the four damage functions.
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Further, small changes to the algorithm, such as using a logarithmic growth of the

percentage value rather than linear growth, improve results for radius-based search

for this metric. Metric 3 shows comparable results for the algorithms; the results are

routinely within 5% of each other for a given damage function.

Figure 43 summarizes the metrics for 100 trials using our algorithm demon-

strating performance of the algorithm against a variety of scenarios (accuracy ranging

from 1 to 5 meters, lethal range varying from 5 to 20 meters, the number of collateral

objects between 20 and 30, locations of the collateral objects and military targets

varying within the 100m x 100m scene). These results confirm our algorithm’s per-

formance as seen in the prototype problem.

Figure 43: Metrics across 100 Radius-Based Trials

Now that we are able to quickly and accurately find a broad range of Pareto

optimal solutions for the true multi-objective formulation, finding solutions to both

the goal programming and weighted sum scalarization formulation becomes straight-

forward. Recall that solutions to weighted sum and goal programming are a subset

of the Pareto optimal solutions. Therefore, we must search only these solutions in

order to find optimal solutions to the other formulations. The radius-based search

gives us the location (x, y) and objective function values (f1, f2) for the optimal

solutions; therefore, testing just these to find an optimal aimpoint is as simple as

searching from among a small group of high quality solutions for the best values.

As long as the weights of the collateral objects are set to 1, the formulation

becomes:

Goal: Max w1f1(x, y)− w2f2(x, y) (26)
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For example, using the Gaussian damage function, if we choose to value lethal-

ity (f1) three times as much as collateral risk (f2), then w1 = 3
4

and w2 = 1
4
. Searching

from our Pareto optimal solutions yields a best solution of 0.1658 (f1 = 0.69, f2 =

1.41) located at (29.4, 72.6). This solution is found without having to reevaluate

the objective function. In a similar manner, assume we used a goal programming

approach where we seek the lowest collateral risk while having at least 50% lethality

on the military target for the same scene. We only need to find the Pareto optimal

point that is the lowest lethality above 0.50, and that is our solution to this goal-

programming problem. This point is located at (27.7, 77.6) with a collateral risk of

1.04 using the Gaussian damage function.

In the next section we will create Pareto front solutions for our airstrike problem

using our radius based algorithm. In particular we explore optimal solutions based

on different scenarios, guidelines and damage function in following sections.

3.5 Results

We first give a visual depiction of the effects of differing the damage function

and approach on the location of the optimal solution. The scenario is the same as

the one depicted in Section 3.4.1, with 20 collateral objects in a 100m x 100m scene.

In the Figure 44 we zoom in on the area around the military target (located at (30,

70)). The lethal range of the weapon is 10 meters and the accuracy is 5 meters.
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Figure 44: Location of Optimal Solutions

The effect of the two closest collateral objects (at points (32.4, 65.1) and (19.6,

68.1)) can be seen in Figure 44 as offsetting the optimal locations north of the military

target for all guidelines and damage functions. As the collateral constraint increases

it pushes the aimpoint away from the target and, similarly, as the lethality constraint

increases, the closer the optimal aimpoint becomes to the target (in Figure 44, we

show a lethality first constraint of 50% and a collateral first constraint of 50% for

comparison).

3.5.1 Effects of Differing Damage Functions. With the differing shape due

to the damage functions seen in Figure 28, the result using a zero offset distance with

a lethal range between 5 and 10 meters along with a standard deviation of the miss

distance of 5 meters and randomly generated collateral objects, we see the following

results for 100 trials:
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Figure 45: Comparison of Damage Functions

The cookie-cutter damage function which is used in CDE overstates lethality by

37% compared to the average of the other three damage functions and it understates

collateral risk by 51%. In the next section, we present a more general result.

3.5.2 Theoretical Collateral Function Values for Differing Damage Functions.

In a space where collateral objects are randomly located throughout an infinite

space, we are able to calculate the theoretical collateral function values for the dif-

ferent damage functions if we know the number of objects per unit of planar space.

By rotating the lethality function around the x-axis and multiplying by the num-

ber of targets per square meter (n), we would obtain expected collateral value for a

randomly generated scene:

E[f2(r)|n] = 2πn

∫ ∞
0

rd(r)dr (27)

When looking at the theoretical value for each damage function, we can see

how the damage functions will give wildly different collateral risk values. E[f2cc ] ≤

E[f2g ] ≤ E[f2e ] regardless of the accuracy and lethal range of the weapon in a

randomly generated infinitely large scene.

That is, the expected collateral risk for the cookie-cutter damage function will

always be less than the Gaussian damage function which will be less than using the

exponential damage function (proof in Appendix A). The collateral risks for varying
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lethal ranges are shown in Figure 46, where the theorem is demonstrated for the

varying damage functions.

Figure 46: Collateral Risk by Damage Function

The values in Figure 47 summarize the collateral damage for twenty collateral

items within a 100m x 100m square along with the lethality at the aimpoint for the

various damage functions.

Figure 47: Expected Collateral Damage
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These results mirror the results of [64], which indicates that the lognormal

damage function gives a higher collateral risk value (and thus a longer stand-off

range) relative to the other damage functions and conversely the cookie-cutter func-

tion gives a lower collateral risk than the other damage functions and therefore a

shorter stand-off range.

3.5.3 Effects of Differing Guidelines. In this section we test another 100

randomly-generated real-world representative problems. Current policy allows for

no offset aiming, whereas the two other guidelines allow for offset aiming while using

either collateral risk or lethality as a constraint, as seen in Equation 21 and 22. We

test lethal range of 5 meters and accuracy of 1 meter using the cookie-cutter damage

function. Further, we assume that the lethality must be at least 0.8 for lethality first

and collateral risk must be no more than 0.2 for collateral first (results in Figure 48).

Figure 48: Results for σ = 1, LR = 1

The baseline methodology, which aims directly at the target, yields the highest

lethality. However, the collateral damage is, on average, 176% higher than for the

collateral first approach and 41% higher for the lethality first approach, with the

lethality being 26% and 14% higher versus the collateral first and lethality first

approaches, respectively.
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Figure 49: Location of Solutions

Figure 49 shows the location of solutions. The lethality first approach requires

an optimal location which is within four meters of the target location in order to

have at least 80% lethality on the target. This is not the case for the collateral first

approach, which can result in solutions very far from the military target in order

to find a location that falls below the 20% threshold for collateral risk (as seen in

Figure 49 where one of the optimal aimpoints is located at roughly (-25, -10) a

distance of almost 27 meters from the target).
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Figure 50: Lethality First vs. Collateral First

In Figure 50, we compare the lethality first and collateral first approaches

(using the Gaussian damage function) for varying levels, with the collateral con-

straint and lethality constraint ranging from 0.2 to 0.8 and differing lethal ranges

and standard deviations. In some scenarios, there are no locations which will yield

a collateral risk less than the constraint or lethality above the lethality constraint.

Thus, feasibility of solutions satisfying both goals is not assured. The trade-off also

introduces the idea of ordnance selection, the topic of the next section.

3.6 Ordnance Selection

Airstrike planners may have a variety of weapons as well as methods of em-

ployment (fusing, run-in, etc.) which affect the lethal range and accuracy. Thus,

to increase lethality and decrease collateral risk a planner must not only look for

the optimal aim-point but also the best selection of weapon and employment. For

instance, assume that in the same scenario in Figure 33, the planner was presented

with the following options of weapon and employment:
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Figure 51: Weapon/Employment Parameters

Let us assume that the damage function follows an exponential distribution.

The lethality/collateral risk trade-off values appear in Figure 52. From this figure,

we see the smaller, more accurate weapons yield a slightly lower lethality, but with

a large reduction in collateral risk (a 75% reduction in collateral risk with only a

10% reduction in lethality when moving from Weapon 1 to Weapon 4). While these

numbers will vary with the scenario and damage function, the take-away is that

smaller weapons provide nearly as much lethality as larger weapons, but with a

greatly reduced amount of collateral risk as long as the accuracy also improves with

the smaller weapon.

Figure 52: Weapon Lethality and Collateral Risk
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Moreover, assume that the mission planners would like to have 90% lethality

on a military target while minimizing collateral risk. If they had only weapons 1 and

4, only weapon 4 aimed close to the target would reach this goal and that would be

at a significant cost (collateral risk around 1.5). However, if they could fire multiple

weapons, perhaps they would choose firing two weapon 4’s, offsetting the weapons

to achieve a lethality just over 0.7 each (since 0.32 ≈ 0.1 yielding a 10% likelihood

of not destroying the target). This choice would yield a combined collateral risk of

under 0.4, over a 70% decrease in collateral risk from firing weapon 1.

Since planners will often be confronted with relatively few choices in terms of

weapons and employment options, then the evaluation of the collateral risk, lethality

and optimal aimpoint for each can be performed in an enumerative manner (this can

be accomplished in parallel if time is a concern). The search algorithms can be

used when either a clear goal is stated (e.g . minimize collateral risk while ensuring

90% lethality on the target) or when a variety of alternatives is available to the

decision-maker. It is, in fact, a straight-forward task to include weapon selection in

our formulation if desired.

3.7 Summary and Conclusions

In this paper we develop a quick and accurate algorithm for accurately creating

the Pareto optimal frontier in the multi-objective airstrike problem. This algorithm,

which leverages specific attributes of lethality and collateral risk, is shown to rou-

tinely outperform differential evolution and enumeration algorithms. Once Pareto

optimal solutions are found these can be quickly converted to solutions to the as-

sociated goal-programming or weighted sum scalarization problems. The choice of

damage function is shown to greatly affect the expected lethality and collateral risk

in an airstrike underscoring the need for accurate estimation of weapons effects.

We demonstrate that the current methodology of not using offset aiming yields

lethality 26% higher at a cost of collateral risk 176% higher than a collateral first
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approach. The algorithm presented can be incorporated into the weapon (and em-

ployment) decisions facing an airstrike planner, who could alter selections based on

the minimum lethality needed or maximum collateral risk allowed to remedy the

limitation from non-offset targeting. Future work will see the application of our al-

gorithm to more complicated lethality and collateral risk models such as the JWS

and JMEM tools currently used by the USAF.
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IV. Look-Look-Shoot: Finite and Infinite Horizon Markov Decision

Policies with Limited Intelligence

4.1 Introduction

In fast moving troops-in-contact (TIC) situations, information is often subject

to the fog and friction of war. Forces cannot wait for perfect information and, as a

result, mistakes are made, civilians and even friendly forces are killed. However, the

alternative of waiting for “perfect” information before an airstrike is ordered has its

own set of consequences. Ground forces may be pinned down, and every second that

goes by increases their likelihood of being shot or killed by enemy forces. However,

there is a cost to making the wrong decision which could result in civilian casualties,

friendly force casualties and unnecessary collateral damage. The questions then

become, “How long do we wait for perfect information?” or “When have we received

enough imperfect information to make a decision?”

In these situations, there will always be a trade-off between the cost of civilian

casualties and the cost of losing friendly forces. There will be a cost of abandoning

friendly forces when they need help, there will be an opportunity cost of air support

spending time in an engagement that does not truly threaten them, and there will

be a cost of killing non-combatants.

4.1.1 Data Fusion. A goal of all observers in a conflict is to correctly

classify the nature of the suspected enemy in a timely manner (as time costs lives,

money, and the opportunity to support other engagements). In pre-planned missions,

where the nature and location of suspected enemy forces are well known, there have

been relatively few civilian casualties in recent years (only two pre-planned missions

resulted in civilian deaths from 2006 to 2007). Conversely, civilian casualties from

TIC situations have exploded in recent years (over 400 civilian deaths from TICs in

2006-07). TIC situations are defined by the lack of previous intelligence about the
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suspected enemy, the location of friendly, neutral and enemy forces, the terrain, and

the capabilities of friendly and enemy forces.

In a TIC situation there may be a variety of observers attempting to determine

the true nature of the suspected hostile player. UAVs circling overhead sending

images of a building back to image analysts, ground forces in varying locations

relative to the suspected enemy, and air support pilots viewing the scene from above

will all give a unique picture of the battlespace. Each will have their own unique

assessment of the ground scenario, and we can assume that each of them has a

differing likelihood of being correct. In order to synthesize these perspectives the

field of data fusion must be introduced to the problem as we seek to get the most

correct information out of the imperfect data gathered from these sources.

Polikar [81] discusses the idea of ensemble based systems in decision making,

whereby diverse classifiers making individual classifications are fused together to

develop a cleaner picture of an unknown event. Polikar gives as an example a patient

undergoing tests for a neurological disorder, who might undergo an MRI scan, EEG,

blood and other tests. An individual test alone might give a prediction as to whether

the patient has the disorder or not, and each test has some type I and type II error

involved with it. The reason multiple tests are performed is that as the doctors get

varying pictures of the disorder, they will make a more robust classification yielding

lower type I and type II errors. We seek to give a framework for applying these same

ideas to TIC classification.

In the simplest case, the observers in a TIC are trying to determine if a building

or group of individuals constitute a legitimate military target. The suspected enemy

forces might truly have combatants among them, but often the multitude of civilians

(non-combatants) among them who would be put in danger with an airstrike could

outweigh the gain of killing the combatants. Recent military guidance has instructed

US personnel to exit situations in which non-combatant lives are in danger, even if
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it means disengaging with known enemy forces, if the personnel are able to safely

exit the environment [39].

4.1.2 Decision Making with Imperfect Information. All decision making

takes places without accurate or complete information on the outcome of the decision.

Often, with more time studying a decision, better information comes to light giving

the decision maker a better grasp of the true nature of the problem and the effects

of a decision [56] [85] [80]. While studying the time pressure on decision making,

Payne [79] notes, “In some cases, the longer the delay in making the decision, the

lower the expected return (value) from even the most accurate of decisions.” The

fact is that we cannot always afford to make an accurate decision, when doing so

delays making a “satisfactory” decision.

Decisions are routinely made in a sequential manner. Consider the stock mar-

ket, where once an investor purchases a stock, every following day, he may choose

whether to sell that stock he purchased, buy more of that stock he purchased, or

simply do nothing. Day after day, a decision is made, and the optimal decision pro-

cess is one in which the profit made on the investment is maximized at some point

in the future and the decision made on any given day depends on all of the decisions

leading up to that point (e.g. the investor cannot sell stock on a day if he sold all of

his stock the day prior).

The process of sequential decision making can be analyzed with dynamic pro-

gramming [31]. We can see the applicability of dynamic programming to TIC situa-

tions, where after receiving incremental information, a pilot may choose to either fire

upon a target, continue to loiter above a target or to leave the situation and attend

to other potential targets. However, as in the stock example, the pilot’s decision

depends on the decisions he has previously made. A target cannot be struck if it has

been previously struck (if we assume a strike completely destroys the target) and a

pilot cannot fire upon a target if his previous decision was to leave the scene. Just as
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with the investor, the pilot’s goal is to link together the chain of decisions which will

yield the best outcome at some defined future point. In order to find that decision

chain we must solve a dynamic program.

4.1.3 Dynamic Programming. Dynamic programming can be thought of

using stages and states. A stage is a discrete point in time at which a decision (uk) is

made based on the state (xk) of the system. The state is the summary of all decisions

from previous stages and their outcomes, due not only to the decisions made but

also the randomness (wk) involved with moving from stage to stage. Some additive

reward is gained for each decision made, and the goal is to maximize the sum of

the rewards over the time horizon of the problem. Bertsekas [13] lays out the main

ingredients of a basic dynamic programming formulation as:

1. A discrete-time system of the form xk+1 = fk(xk, uk, wk),

2. Independent random parameters,

3. A control constraint (decision),

4. An additive cost of the form EgN(xN) +
∑N−1

k=0 gk(xk, uk, wk),

5. Optimization over policies (rules for choosing uk for each k and each possible

value for xk).

Denardo [31] formulates the dynamic programming problem as xk+1 = fk(xk, uk, wk),

k = 0, 1, . . . , N − 1 where:

k indexes discrete time,

xk is the state of the system and summarizes past information that is relevant

for future optimization,

uk is the control or decision variable to be selected at time k,

wk is a random parameter,

N is the number of time control is applied.

For the Look-Look-Shoot (LLS) problem, we assume that each stage brings about
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more data relating to the problem assuming the pilot continues to loiter. The rewards

in this model are typically assumed to be costs, either the cost of a “look” decision

or the likelihood of being incorrect given a “leave” or “shoot” decision.

4.1.4 Markov Decision Process. A Markov decision process (MDP) is a

problem in which there is a decision maker, a finite number of policies or choices

the decision maker can choose, a transition probability matrix which defines the

likelihood of the next state given the current state and policy, a transition reward

matrix which indicates the current reward gained for the state and policy, and a

performance metric based on the rewards gained during the stages of the MDP [42].

S, a finite state space of possible system states. A realization of the random variable

S is denoted by s.

A, a finite set of actions. A realization of the random variable A is denoted by a.

An action a causes transitions from the current state to some new state.

T : S×A×S → R[0,1] is the state-transition function, giving the probability that the

agent transit to state s′ when it is in state s and takes action a. In other words, the

transitions specify how each of the actions and exogenous events change the state of

the world. We denote by T (s, a, s′) = P (s′|a, s) this probability. We have for each

s,
∑

s′ P (s′|a, s) = 1.

R : S ×A→ R is the reward function giving the expected immediate reward gained

by the agent for taking each action in each state.

4.1.5 Partially Observable Markov Decision Process. When the agent is

unsure of the state s that he is currently in, unlike the MDP where the agent knows

where he is at all times, this problem becomes a POMDP. There is some probability

distribution around the state in which the agent thinks he is in (the belief state b).

O : S × A → Π(Ω) is the observation function, which gives, for each action

and resulting state, a probability distribution over possible observations (we write
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O(s′, a, o) for the probability of making observation o given that the agent took

action a and landed in state s′ [72].)

Monahan [72] introduces a system where one of three decisions may be made.

Either the observer can “inspect” - attempt to observe the true state of the target

another time (at a cost), “stop” - make a determination as to the true state of the

target and have no option for further observation, or “continue” in which he moves

to the next time interval (at a cost) where the same three options will again be

available to him. In the next time interval there is some probability that the nature

of the target has changed which is a difference from the assumptions in this paper.

McAllister [68] further notes, “While the Markovian property does not hold for the

state of the system, it does hold for the belief state of the system. The optimal policy

for any given stage is only dependent on the current belief state and not decisions

made in previous stages.”

4.1.5.1 Two-State Belief State. When trying to classify a suspected

target in a TIC situation, we are concerned with classifying the target as “legitimate”

or “illegitimate”, hence the two-state belief state (we believe, with some likelihood

that the target is “legitimate” or “illegitimate”). In a POMDP with a two-state

belief state, the likelihood of being in either of the two states can be expressed by

the belief (p) of being in one state or the other, since the likelihood of being in the

other state is 1− p. In Figure 53, the current belief state is expressed as p, which is

the observer’s belief that the true nature of the state is s1. As the observer becomes

more confident in s1 being the true nature of the state, then p will increase, and,

similarly, if the observer becomes more confident that s2 is the true nature of the

state then p will decrease (as s2 becomes the more likely true state). Thus, our belief

state can be written as b = (p, 1− p) yielding b(s1) = p and b(s2) = 1− p = q (note:

b(s1) + b(s2) = 1).
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Figure 53: Two-State Belief State

In a simple example, depicted in Figure 54, initially the observer believes that

the true state is equally likely to be in s1 or s2. The observer knows that each

observation has a 75% likelihood of being correct, thus, if he observes s1, then his

belief state is b = (0.75, 0.25) and if he observes s2, then his belief state becomes

b = (0.25, 0.75).

Figure 54: Belief State after First Observation

A complete policy for a POMDP is the optimal policy for each possible belief

state [50]. The optimal policy for a given stage is then only dependent on the

belief state at that stage and not decisions made during previous stages (the Markov

condition). Of particular note, a belief space may be partitioned into more regions

than actions, meaning that one action can be optimal for disparate regions of the

belief space [50] [73] [72].

Working from Bayes’ Theorem, the new belief state at a new stage is:

b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

P (o|a, b)
(28)
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with P (o|a, b) =
∑

s∈S[O(s′, a, o)
∑

s∈S T (s, a, s′)b(s)] indicating that future belief

state is a function of both the current stage’s belief state, the action taken during

the current stage, and the observation made.

4.1.6 Shoot-Look-Shoot. Glazebrook and Washburn [41] present a review

of the “Shoot-Look-Shoot” problem in which a marksman is required to kill a given

number of targets. Once the marksman shoots, he looks to see if the target has been

killed, and then, if the target hasn’t been killed, he may choose to shoot again at

that same target. The problem gets further complicated by imperfect information

wherein the marksman may get possibly incorrect information as to the alive/dead

status of the previous target. Glazebrook and Washburn view the problem as a

Markov decision process and use a stochastic dynamic programming approach to

develop the marksman’s optimal strategy.

A difference between the “Look-Look-Shoot” problem and the “Shoot-Look-

Shoot” problem is that LLS allows for only one shooting. We assume that when

a target is aimed at, it is completely destroyed; battle damage assessment is not

implemented. In the LLS problem, imperfect information plays a role when the pilot

is unsure whether a target is a legitimate military target or not.

4.2 Finite Horizon

When viewing the LLS problem as having a finite horizon we allow for only a

given number of stages, at which time the TIC situation has been resolved, either

by firing upon the target or the air support leaving the situation. The finite horizon

problem lends itself to being solved through the dynamic programming method of

recursive fixing starting from the final time period and incrementally making decision

backwards. We implement this method in both cases where the quality (likelihood

of being correct) of information is constant across stages and where information
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improves as we move through the stages as more surveillance and intelligence become

available in the TIC situation.

We will further assume that information arrives at set intervals each one unit

of time apart. The inputs to the problem then become: the information distribution

as a product of time, the cost of waiting one cycle for more information (cw), and the

cost of striking a building which is not a legitimate military target (cs). Further cw <

cs since otherwise there would never be an incentive to wait for more information also

the choices for action at each stage is either “L” (look, make another observation),

“S” (shoot, fire upon the target ending the scenario) or “X” (exit, leave the scenario

without firing). Note: only the “L” choice results in future stages.

4.2.1 Stationary Information. With a stationary information assumption,

information at each observation has the same probability of being correct. For exam-

ple, past observations in other TIC environments may point to correct classification

being 75%, where we assume an observer correctly classifies the target as “legitimate”

or “illegitimate” 75% of the time.

In the binary decision for stationary information such as determining the nature

of the target, the likelihood of correct classification depends only on the difference in

the number of “legitimate” and “illegitimate” observations made at a point in time.

For instance, if there are three out of five observations that result in a “legitimate”

determination, then the likelihood of this object truly being legitimate is exactly

the same as if two out of three observations yield “legitimate” calls. (In this case,

both have 0.5 observations above the 50% level.) The likelihood then of correct

classification is p2n/(p2n+q2n) where n is the number of observations above (or below)

50%. Clearly, as n approaches infinity, then the likelihood of correct classification

approaches 1.

Further, we can determine the likelihood of a future observation agreeing with

previous observations. In a simple case, assume that p = 0.75, what is the likeli-
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hood of the second observation agreeing with the first observation? The answer is

the likelihood that they are both wrong plus the likelihood they are both correct

(p2 + q2 = 0.752 + 0.252 = 0.625) and the likelihood that they disagree is then

1− 0.625 = 0.375. Moreover, if we know that the previous observations (regardless

of how many correct and incorrect observations have been made) yield a 0.75 proba-

bility of being correct, then the next observation will agree with the prior consensus

62.5% of the time and disagree 37.5%. We can further prove (see Appendix B)

that with information improvement over time, one would never shoot immediately

following an “illegitimate” call.

4.2.2 Improving Information. There are reasons to believe that the in-

formation gathered in successive stages will improve due to more intelligence assets

being placed in the scenario, whether in the form of more ground forces entering

the TIC scenario, more UAVs being moved into the environment or more air-to-

ground fighters joining the TIC. With this assumption, better information becoming

available will typically resolve the nature of the suspected target more quickly.

4.2.3 Recursive Fixing. In the finite horizon scenario for either stationary

or improved information, as the horizon stage (the last stage considered) increases

linearly the number of possible strategies increases exponentially. For instance, if

there is only one stage, then our choices are to “shoot” or “leave” depending on

whether the first observation is “legitimate” or “illegitimate”. That is, we could have

an optimal strategy of (S,S), (S,X), (X,S), or (S,S) for the two possible outcomes

of the observation. For the case where there are two observations made, we could

have many more strategies since now a strategy after the first observation may be to

look “L”, giving three possible actions after the first observation. Further, we add

another round of observations and decisions when making a second observation and

this grows the number of possible strategies exponentially as the stages increase (see

Figure 55), note that possible strategies equals 5n−1 where n is the horizon stage.
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Figure 55: Possible Strategies by Horizon

Again, we will assume that information arrives at set intervals each one unit

of time apart. The inputs will remain the information distribution as a product

of time, the cost of waiting one cycle for more information (cw), and the cost of

striking a building which is not a legitimate military target (cs). Let’s assume,

for example, that information follows the cumulative distribution function of the

geometric distribution with a probability of p. Thus, the likelihood of getting correct

information on the first look is p, on the second look it’s 1 − (1 − p)2 and on the

third look 1− (1− p)3 (that is, on the nth look the likelihood of correct information

is 1− (1− p)n). Further, we will assume that each look is independent of any other

look.

We will assume that our a priori assumption is that upon arrival at a TIC,

a target is equally likely to be legitimate or illegitimate. Further, if we assume a

finite horizon of only one look, then the problem is simple to solve if we assume that

a target is equally likely to be legitimate or illegitimate. If upon the first look the

target is called “legitimate” then if cw
cs
> 1−p

p
the target should be fired upon and

if cw
cs
< 1−p

p
then no strike should take place. In a similar manner, if the weapon is

called “illegitimate” and cs
cw

> 1−p
p

then no strike should take place and cs
cw

< 1−p
p

indicates that a strike should still take place.
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With a finite time horizon and two looks, the problem is more complicated

since the two looks may yield different responses. For instance, the first look may

call the target “legitimate” and the second calls it “illegitimate”. By our assump-

tion the second look is more accurate but is mitigated by the first look yielding a

“legitimate” call. For simplicity, call the likelihood of correct information at the nth

look L(p, n), where L(p, n) = 1− (1− p)n and L′(p, n) = (1− p)n is the likelihood of

the nth look being incorrect. If both calls are “legitimate” then the likelihood of the

target being legitimate is L(p,1)L(p,2)
L(p,1)L(p,2)+L′(p,1)L′(p,2)

. If the first call is “legitimate” and

the second call is “illegitimate” then the likelihood of the first call being correct is

L(p,1)L′(p,2)
L(p,1)L′(p,2)+L′(p,1)L(p,2)

. Now, we begin to see the dynamic programming formulation

of the finite horizon LLS problem. The cost of waiting must not only include cw, but

must also include future expected costs of cw and cs.

If we consider “S” and “X” to be the same action (both of which end the

situation) then the finite horizon network with two observations looks like:

Figure 56: Two-Look Horizon
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Again, assume a two-look horizon where a target is equally likely to be le-

gitimate or illegitimate. We can then calculate the likelihood of a “legitimate” or

“illegitimate” call at each stage given previous calls. At look 1 (L1) the likelihood of

a “legitimate” call is 0.5. The likelihood of L2 being the same as L1 is p(1− q2) + q3

with the likelihood of being contradictory at 1− (p(1− q2) + q3). Further, the cost

of never shooting equals 2cw, the cost of waiting and then shooting being cw + pics,

and the cost of shooting immediately after the first look being pics. While cs and

cw are constant, pi (the probability of the target being illegitimate) changes as we

get more or different observations. For example, pi = q if we shoot after L1 returns

“legitimate”, however, pi = p if we shoot after L1 returns “illegitimate”. For the

two-horizon problem, shooting after both looks return “legitimate” yields:

pi = L′(p,1)L′(p,2)
L(p,1)L(p,2)+L′(p,1)L′(p,2)

= q3

q3+p(1−q2) . Shooting after L1= “I” and L2 = “L” results

in:

pi = L′(p,1)L′(p,2)
L(p,1)L(p,2)+L′(p,1)L′(p,2)

= pq2

q(1−q2)+pq2 .

If we assume p = 0.75, then L1 = L2 = “L” yields pi = 1
46

whereas if L1 = “I”

and L2 = “L” results in pi = 1
6
. Then, if after two looks, cw

cs
> pq2

q(1−q2)+pq2 then one

would shoot after if L2 = “L”, if then one should shoot if L1 = L2 = “L”, and not

shoot otherwise. Determining, what to do after the first look is more complicated,

since we must incorporate the expected cost after the second look.

If L1 = “L” our cost will be:

min{qcs, cw+(p(1−qw)+q3) ·min{cw, cs( q3

q3+p(1−q2))}+cw(1−p(1−q2)−q3)}. Using

the p = 0.75 assumption, this breaks down to min{ cs
4
, cw + 23

32
·min{cw, cs46 + 9cw

32
}}.

If cw
cs
> 1

6
, then min{ cs

4
, cw + 23cw

32
+ 9cw

32
} = min{ cs

4
, 2cw} = cs

4
meaning we would

shoot after L1 = “L”. If 1
46
< cw

cs
< 1

6
, then min cs

4
, cw + 23

32
·min{cw, cs46}+ 9cw

32
=

min{ cs
4
, cw + 23

32
· cs
46

+ 9cw
32
} = min{ cs

4
, 41cw

32
+ cs

64
}, so since cw

cs
< 1

6
< 15

82
then we would

wait to shoot.

If L1 = “I”, then our cost will be cw + cw(p(1 − q2) + q3) + (1 − p(1 − q2) −

q3) ·min{cw, cs pq2

q(1−q2)+pqs}.
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If cw
cs
> 1

6
, then cw + 23cw

32
+ 9

32
·min{cw, cs6 } = 55cw

32
+ 9cs

192
. If cw

cs
< 1

6
, then wait.

Figure 57: Two-Look Horizon Policy (p = 0.75)

4.3 Infinite Horizon with Stationary Information

The infinite horizon problem cannot be solved by recursive fixing since there

is no final stage. However, for stationary information, we can rely upon the Markov

attributes of the problem in order to recursively solve the TIC problem.

4.3.1 Building the Transition Matrix. In the stationary information case,

we are able to exploit the Markov nature of the problem since the likelihood of a

target being correctly identified as a friend or foe depends only on the difference in

the number of “legitimate” and “illegitimate” observations made up to that stage.

The state at a given time is identical to the belief state at that time, and not the

number of observations made to that point (this is not the case for improving infor-

mation). Further, we know the likelihood of the next observation being “legitimate”

or “illegitimate”. Let b be the belief state at a point in time, where b is the greater of

the probability that the target is “legitimate” or “illegitimate”, then the likelihood

that the next observation agrees with the prevailing belief is b ∗ p+ (1− b) ∗ (1− p).

As b grows larger, the likelihood of the next observation agreeing with the prevailing

belief increases (with a limit of p).

Therefore, we can make a transition matrix based on the belief state (expressed

in terms of the difference between the number of “legitimate” and “illegitimate” calls)

prior to the current stage (i.e. P1 may represent 5 “L”s and 4 “I”s or 1 “L” and 0

“I”s). From P1, for example, we can only move to P0 or P2. The transition matrix,
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which is infinitely large, becomes:

P =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. . .
...

...
...

. . .

· · · P−1,−1 P−1,0 P−1,1 · · ·

· · · P0,−1 P0,0 P0,1 · · ·

· · · P1,−1 P1,0 P1,1 · · ·
. . .

...
...

...
. . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(29)

with
∑∞

j=−∞ Pi,j = 1, i ∈ Z and Pi,j = 0 if |i− j| 6= 1.

If we choose to truncate the matrix at a given point (in this case, looking from

i and j from -3 to 3) and we insert the transition probabilities then the result is:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≈ 1 0 0 0 0 0 0

p3+q3

p2+q2
0 p2q+pq2

p2+q2
0 0 0 0

0 p2+q2

p+q
0 2pq

p+q
0 0 0

0 0 0.5 0 0.5 0 0

0 0 0 2pq
p+q

0 p2+q2

p+q
0

0 0 0 0 p2q+pq2

p2+q2
0 p3+q3

p2+q2

0 0 0 0 0 0 ≈ 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(30)

Since Pi,j = P−i,−j we can convert the transition matrix to:

P =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 P0,1 0 0 0 · · ·

P1,0 0 P1,2 0 0 · · ·

0 P2,1 0 P2,3 0 · · ·

0 0 P3,2 0 P3,4
. . .

...
...

. . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(31)

Now that we have described the transition matrix we can use it to guide the optimal

strategy determination. If the likelihood of incorrectly identifying the target as a
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legitimate target is below the cost of waiting divided by the cost of shooting at an

illegitimate target then we would always fire. That is, if pi = 1− pl < cw/cs then we

would fire upon the target.

By looking at the limiting behavior of the transition matrix (P (∞)), we then

can see the likelihood of the target truly being legitimate or illegitimate based on the

previous observations. Again, if we had only one observation and it was “legitimate”

then the likelihood of that target truly being legitimate is 0.75 (the same is true if

we had two “legitimate” calls and one “illegitimate” call). Thus the likelihood of

being correct based on the difference in the number of observations is

[
· · · p2

p2+q2
p
p+q

0.5 p
p+q

p2

p2+q2
· · ·
]

(32)

P (∞) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

...
...

...
...

...

p2

p2+q2
0 · · · 0 q2

p2+q2

p
p+q

0 · · · 0 q
p+q

0.5 0 · · · 0 0.5

q
p+q

0 · · · 0 p
p+q

q2

p2+q2
0 · · · 0 p2

p2+q2

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(33)

If we cut off the number of observations above 50% necessary to make a definitive call

then the transition matrix becomes finite with two absorbing states (one for targets

deemed “illegitimate” and one for those deemed “legitimate”). This adjustment is

supported by pi = 1 − pl <
cw
cs

determination, which prescribes that if qi
pi+qi

< cw
cs

then we will fire, thus negating the need for further observations. Once we find the i

for which “S” or “X” (i.e. qi

pi+qi
< cw

cs
) is the optimal policy then we can recursively

find the optimal strategy for any i.
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4.3.2 Mean Time Spent in Transient States. Assuming we have found the

terminating state i, then we will determine the optimal policy recursively for state

i − 1, i − 2, and so on until reaching 0. To accomplish this we must know the

relative costs of actions in state i−1. In state i−1, we will know the cost associated

with the “S” or “X” action in state i, but we need to know the expected number

of observations necessary to reach state i from i − 1 (or the mean time spent in

transient states (0, 1, . . . , i− 1)) [85].

PT =


P11 P12 · · · P1t

...
...

...
...

Pt1 Pt2 · · · Ptt

 (34)

S =


s11 s12 · · · s1t
...

...
...

...

st1 st2 · · · stt

 (35)

S = I + PTS (36)

(I−PT )S = I

S = (I−PT )−1

Assuming i = 5, p = 0.75, then our S matrix would be:

S = (I−PT )−1 =



1.98 2.62 2.13 1.84 1.34

0.98 2.62 2.13 1.84 1.34

0.38 1.02 2.13 1.84 1.34

0.13 0.34 0.70 1.84 1.34

0.03 0.09 0.18 0.47 1.34


(37)
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The S matrix shows that if we are in state i − 1 = 4, then we will need

0.03 + 0.09 + 0.18 + 0.47 + 1.34 = 2.11 more observations on average to reach the

absorbing state i where we know that the optimal strategy is “X” or “S”.

4.3.3 Constructing the Optimal Policy. Let si =
∑t

n=1 sin which indicates

the expected number of transitions from the ith state until reaching the terminating

state. If sicw > qi

pi+qi
cs then the optimal policy would be to shoot upon reaching

state i. Further, since there is uncertainty still at the terminating state equal to

pt+1

pt+1+qt+1 then if sicw + qt+1

pt+1+qt+1 cs >
qi

pi+qi
cs the optimal policy is to shoot, in this

example p = 0.75, and the ratio of cw to cs is 0.01.

The infinite horizon scenario for the LLS can be mapped to the tiger problem

presented in [50], where the observer must choose between continuing to listen for a

tiger (at a small cost) or open a door revealing a tiger (or fortune) at a large cost or

reward. Once the observer’s belief state reaches a certain level of confidence, then

he would choose to open the door. This problem has a fairly simple structure for the

optimal decision policy, where the three choices are to open the left door, continue

to listen, and open the right door, are three non-overlapping segments of the [0,1]

belief state. As a reminder, though there may be only three possible decisions in

an POMDP, the number of ranges where one decision is optimal is infinite. The

challenge then is to determine the two points in the belief state where we move from

“leave” to “look” and from “look” to “shoot”. In the case where the cost of firing

upon an invalid target equals the cost of leaving when the target is valid, then the

two points are equal distances from 0 and 1 (i.e. the two points add to 1).

4.4 Results

Now that we can construct the optimal policy in the infinite horizon, stationary

information problem, we investigate the effects of the parameters of the problem on

the average time to make decisions and the average cost of a TIC situation.
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4.4.1 Effects of Intelligence on Decisions. In Figure 58 we view the effects

of intelligence accuracy on the observation difference necessary to make an “S” or

“X” decision. In this example, we assume that cw/cs is 0.01. We see that, as

one might expect, extremely accurate intelligence leads to a very small number of

observations necessary to make an “S” or “X” decision (in the case where p = 0.99,

we would immediately make an “S” or “X” determination). However, of interest,

is that extremely poor information, such as p = 0.5, results in a similar choice of

“S” or “X” after the first observation. This basically tells us that our information is

so unreliable, that waiting for more “bad” information will do us no good. We will

have no improved belief state with time.

Figure 58: Quality of Information vs. Observations

4.4.2 Effects of a priori Information on Decisions. Up to this point, the

assumption has been that the observer is equally likely to see either a valid or invalid

target. However, if, based on experience, historical evidence points to a different

ratio of valid to invalid targets then we can incorporate this into the model. A priori

information will have the same effect as previous observations would have. A priori

information will give the initial belief state of the system, whereas before, the initial

belief state was (0.5, 0.5), if the accuracy of the a priori information is pp, then our
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initial belief state will be (pp, 1−pp) or (1−pp, pp). The same technique of finding the

absorbing state and recursively setting the optimal policy will apply. The transition

matrix will reflect the a priori information where the entries to the left and right of

the diagonal are multiplied by 2pp and 2(1− pp) or vice versa.

4.4.3 Effects of Weights on Decisions. In Figure 59, we vary the ratio of cw

to cs from 0.1 to 1.0 to see the effect of the relative costs on our decision threshold.

As the cost of waiting decreases relative to the cost of either firing on an illegitimate

target or not firing on a legitimate target the number of observations necessary to

make a “S” or “X” determination increases.

Figure 59: Effect of Changing Costs

Further, we have assumed that the cost of shooting and the cost of leaving

(reaching the conclusion that the observer no longer waits) were equal. However, if

the cost of shooting and the cost of leaving were unequal, then the transition matrix

would have to be altered. Additionally, this would create two different levels for the

two absorbing states (the points where the observer would definitely leave the scene

or definitely fire upon the target).
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The findings of this chapter are based on a multitude of assumptions in an

effort to keep this material unclassified. However, the sensitivity analyses provide

understanding of the various factors at play in these TIC situations.

4.5 Conclusion and Future Work

In this chapter, we have provided a framework for making optimal policy de-

cisions in fast-moving TIC situations where observers are unsure of the nature of

possible enemy forces in both finite horizon and infinite horizon problems. Through

the recursive technique of solving this Markov decision process we have demonstrated

the effect of improved intelligence and differing weights concerning waiting and mak-

ing incorrect decisions in the face of uncertain situations.

Future work involves creating heuristics for solving the TIC problem for the in-

finite horizon with improving information. In these situations, the Markov property

will not hold limiting the ability to apply many of the techniques in this paper. Addi-

tionally, making the problem more real-world reflective will lead to more complicated

cost and decision parameters.
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V. Summary, Future Work, and Conclusions

5.1 Summary of Original Contribution

In this dissertation, a characterization of the distribution of supply airdrops

and methods for optimally dropping them is presented. Specifically, supply air-

drops follow a bivariate normal distribution in which the x and y deviations are

uncorrelated (ρ = 0). A surrogate approximation function for the bivariate nor-

mal distribution supports quick integration of the distribution to assess drop risk.

RSM with surrogate, and DE, both return Pareto optimum results depending on a

tradeoff between runtime and accuracy. Both achieve near-optimal solutions of the

non-linear program resulting from the airdrop problem, quickly finding settings for

both airdrop location and approach angle. Enumeration is strongly dominated by

all other algorithms.

We suppose an airdrop planner who has been shown the oval shapes and scales

of a bundled set of a supply airdrop could predict the optimal aimpoint within 50

meters in each direction and the drop angle within 5 degrees angle of the optimal

solution. Note that this is a high standard - we have looked at hundreds of combi-

nations of drops, yet still only approach that level of accuracy. In our base problem,

where the collateral objects have the same weighting, the planner “eyeballing” a

solution would have a collateral risk 14% higher than the optimum. In more com-

plicated scenarios where the collateral objects are weighted differently, “eyeballing”

a solution becomes much worse than the solutions found by our algorithms, with

“eyeballed” solutions routinely worse by 20% or more. A more reliable technique

must be implemented to limit damage and ensure recoverability.

Additionally, a quick and accurate algorithm for accurately creating the Pareto

optimal frontier in the multi-objective airstrike problem is presented. This algorithm,

which leverages specific attributes of lethality and collateral risk, is shown to rou-

tinely outperform differential evolution and enumeration algorithms. Once Pareto
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optimal solutions are found these can be quickly converted to solutions to the as-

sociated goal-programming or weighted sum scalarization problems. The choice of

damage function is shown to greatly affect the expected lethality and collateral risk

in an airstrike underscoring the need for accurate estimation of weapons effects.

We demonstrate that the current methodology of not using offset aiming yields

lethality 26% higher at a cost of collateral risk 176% higher than a collateral first

approach. The algorithm presented can be incorporated into the weapon (and em-

ployment) decisions facing an airstrike planner, who could alter selections based on

the minimum lethality needed or maximum collateral risk allowed to remedy the

limitation from non-offset targeting.

Finally, we provide a framework for making optimal policy decisions in fast-

moving TIC situations where observers are unsure of the nature of possible enemy

forces in both finite horizon and infinite horizon problems. Through the recursive

technique of solving this Markov decision process we have demonstrated the effect of

improved intelligence and differing weights concerning waiting and making incorrect

decisions in the face of uncertain situations.

5.2 Future Work

The future work for the research presented in this dissertation will be modifying

the algorithms and theory to real-world software and application. Tools currently

in use by the USAF have more complicated inputs for both airdrop and airstrike

collateral estimates. While the tools being implemented today provide more accuracy

than the assumptions in this work, they all seem to lack the optimization step that

is necessary to truly lower collateral risk.

5.3 Conclusions

The importance of collateral damage minimization in U.S. engagements around

the world is undeniable. While steps have been taken to estimate collateral risks for
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airdrop and airstrike missions, there has been little done to minimize this collateral

risk efficiently. For airdrops, there is no tool available to find optimal locations

within a drop area to avoid collateral risk while ensuring recoverability, typically,

trained mission planners look for areas within a scene to make a drop. Results from

this work indicate that planners could be greatly aided by the work presented.

For airstrikes, offset aiming is a vital piece of mission planning, and one that

should be incorporated in the earliest stages of collateral damage estimation. Fur-

ther, the cookie-cutter damage function should be scrapped in favor of more repre-

sentative damage functions. While these functions may be more difficult to visualize,

the software packages available to mission planners should have no issues with han-

dling the more complicated distributions.

TIC scenarios present the greatest collateral risk and the most difficult type

of risk to lower. Improved intelligence gathering and an a priori understanding

of tradeoffs within a TIC have been shown to speed up decision-making in these

time-sensitive engagements.

Collateral damage and civilian deaths continue to plague U.S. missions world-

wide and attempts to minimize these risks are at the forefront of military leaders’

efforts. This dissertation presents important improvements in understanding the

source of collateral risk and steps which the U.S. military can take to minimize risk

while still ensuring mission success.
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Appendix A. Proof 1

THEOREM: The expected collateral risk in a randomly-generated infinitely-large

scene E[f2cc ] ≤ E[f2g ] ≤ E[f2e ] regardless of the accuracy and lethal range of the

weapon.

PROOF: Expected collateral risk is independent of accuracy when randomly aiming

by Formula 18. Additionally, by assumption, the lethal range for each damage func-

tion is equal, i.e. LR =
∫∞
0
dcc(r)dr = LR =

∫∞
0
dg(r)dr = LR =

∫∞
0
de(r)dr.

Each pair-wise set of damage functions overlaps only once. For the cookie-cutter

and the Gaussian damage function, the functions only intersect at r = LR since

r < LR → dcc = 1 and r > LR → dcc = 0 and 0 < dg < 1, when r < LR then

dcc > dg when r > LR then dcc < dg. For the Gaussian and exponential functions,

the two functions cross only at the point r = 4LR
π

with de < dg for r < 4LR
π

and

de > dg for r > 4LR
π

.

LEMMA: If
∫∞
0
d1(r)dr =

∫∞
0
d2(r)dr, d1(r) < d2(r) for r ∈ [0, x), and d1(r) > d2(r)

for r ∈ (x,∞) then
∫∞
0
rd1(r)dr ≥

∫∞
0
rd2(r)dr.
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∫ ∞
0

d1(r)dr =

∫ ∞
0

d2(r)dr∫ x

0

d1(r)dr +

∫ ∞
x

d1(r)dr =

∫ x

0

d2(r)dr +

∫ ∞
x

d2(r)dr∫ ∞
x

d1(r)dr −
∫ ∞
x

d2(r)dr =

∫ x

0

d2(r)dr −
∫ x

0

d1(r)dr∫ ∞
x

[d1(r)− d2(r)]dr =

∫ x

0

[d2(r)− d1(r)]dr

x

∫ ∞
x

[d1(r)− d2(r)]dr = x

∫ x

0

[d2(r)− d1(r)]dr∫ ∞
x

x[d1(r)− d2(r)]dr =

∫ x

0

x[d2(r)− d1(r)]dr∫ ∞
x

r[d1(r)− d2(r)]dr ≥
∫ ∞
x

x[d1(r)− d2(r)]dr =

∫ x

0

x[d2(r)− d1(r)]dr ≥
∫ x

0

r[d2(r)− d1(r)]dr∫ ∞
x

r[d1(r)− d2(r)]dr ≥
∫ x

0

r[d2(r)− d1(r)]dr∫ ∞
x

rd1(r)dr −
∫ ∞
x

rd2(r)dr ≥
∫ x

0

rd2(r)dr −
∫ x

0

rd1(r)dr∫ ∞
x

rd1(r)dr +

∫ x

0

rd1(r)dr ≥
∫ x

0

rd2(r)dr +

∫ ∞
x

rd2(r)dr∫ ∞
0

rd1(r)dr ≥
∫ ∞
0

rd2(r)dr

Therefore,
∫∞
0
rdcc(r)dr ≤

∫∞
0
rdg(r)dr ≤

∫∞
0
rdc(r)dr → 2πn

∫∞
0
rdcc(r)dr ≤ 2πn

∫∞
0
rdg(r)dr ≤

2πn
∫∞
0
rdc(r)dr, thus E[f2cc ] ≤ E[f2g ] ≤ E[f2c ].
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Appendix B. Proof 2

THEOREM: No optimal policy recommends firing after receiving an “illegitimate”

call when p > 0.5.

PROOF:

CASE I: Previous to the “illegitimate” call, there have been more “legitimate” calls

than “illegitimate” calls.

The “illegitimate” call would move the Markov decision process to a state

already visited in the scenario. Due to the Markov property, only the state currently

in (and not the path to that state) determines the policy for that state. If the optimal

policy at the new state is “shoot”, then the observer would have already shot when

at the state previously.

CASE II: Previous to the “illegitimate” call, there have not been more “legitimate”

calls than “illegitimate” calls.

The belief state (legitimate, illegitimate) is ( qi

pi+qi
, pi

pi+qi
) when there have been

i more “illegitimate” calls than “legitimate” calls, with i ≥ 0. With the likelihood of

a correct observation p > 0, then pi

pi+qi
> qi

pi+qi
meaning the likelihood of the target

being illegitimate is greater than the likelihood of the target being legitimate. Since

the cost of leaving a legitimate target equals the cost of firing at a illegitimate target,

then the cost of leaving the scenario ( qi

pi+qi
cs) is lower (more optimal) than the cost

of firing upon the target ( pi

pi+qi
cs).

0-1-2-3 1 2 3-n n· · ·· · ·

Figure 60: Markov Transition Diagram
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